DOI QR코드

DOI QR Code

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • 투고 : 2017.08.14
  • 심사 : 2017.09.26
  • 발행 : 2017.09.30

초록

We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

키워드

참고문헌

  1. H. Deng, K. Endo, and K. Yamamura,uf Sci. Rep. 5, 8947 (2015). https://doi.org/10.1038/srep08947
  2. D. -K. Kim, K. -S. Jeong, Y. -S. Kang, H. -K. Kang, S. -W. Cho, S. -O. Kim, D. Suh, S. Kim, and M. H. Cho, Sci. Rep. 6, 34945 (2016). https://doi.org/10.1038/srep34945
  3. D. -K. Kim, Y. -S. Kang, K. -S. Jeong, H. -K. Kang, S. W. Cho, K. -B. Chung, H. Kim, and M.-H. Cho, J. Mater. Chem. C 3, 5078 (2015). https://doi.org/10.1039/C5TC00076A
  4. J. L. Cantin, H. J. von Bardeleben, Y. Shishkin, Y. Ke, R. P. Devaty, and W. J. Choyke, Phys. Rev. Lett. 92, 015502-015505 (2004). https://doi.org/10.1103/PhysRevLett.92.015502
  5. S. Wang, S. Dhar, S. Wang, A. C. Ahyi, A. Franceschetti, J. R. Williams, L. C. Feldman, and S. T. Pantelides, Phys. Rev. Lett. 98, 026101-026104 (2007). https://doi.org/10.1103/PhysRevLett.98.026101
  6. K. -C. Chang, N. T. Nuhfer, L. M. Porter, and Q. Wahab, Appl. Phys. Lett. 77, 2186-2188 (2000). https://doi.org/10.1063/1.1314293
  7. K. -C. Chang, L. M. Porter, J. Bentley, C. -Y. Lu, and J. Cooper Jr, J. Appl. Phys. 95, 8252-8257 (2004). https://doi.org/10.1063/1.1737801
  8. T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin, and M. Das, Appl. Phys. Lett. 93, 022108-022110 (2008). https://doi.org/10.1063/1.2949081
  9. X. Shen and S. T. Pantelides, Appl. Phys. Lett. 98, 053507-053509 (2011). https://doi.org/10.1063/1.3553786
  10. R. E. Herbert, Y. Hwang, and S. Stemmer, J. Appl. Phys. 108, 124101 (2010). https://doi.org/10.1063/1.3520431
  11. K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, and K. Saraswat, Electron Devices, IEEE Transactions on. 55, 547 (2008). https://doi.org/10.1109/TED.2007.912365
  12. B. Hornetz, H.-J. Michel, and J. Halbritter, J. Vac. Sci. Technol. A 13, 767-771 (1995). https://doi.org/10.1116/1.579824
  13. S. Yasuhara, J. Chung, K. Tajima, H. Yano, S. Kadomura, M. Yoshimaru, N. Matsunaga, and S. Samukawa, J. Phys. D: Appl. Phys. 42, 235201-235208 (2009). https://doi.org/10.1088/0022-3727/42/23/235201