DOI QR코드

DOI QR Code

A noise reduction method for MODIS NDVI time series data based on statistical properties of NDVI temporal dynamics

MODIS NDVI 시계열 자료의 통계적 특성에 기반한 NDVI 데이터 잡음 제거 방법

  • 정명희 (안양대학교 디지털미디어학과) ;
  • 장석우 (안양대학교 디지털미디어학과)
  • Received : 2017.08.23
  • Accepted : 2017.09.15
  • Published : 2017.09.30

Abstract

Multitemporal MODIS vegetation index (VI) data are widely used in vegetation monitoring research into environmental and climate change, since they provide a profile of vegetation activity. However, MODIS data inevitably contain disturbances caused by the presence of clouds, atmospheric variability, and instrument problems, which impede the analysis of the NDVI time series data and limit its application utility. For this reason, preprocessing to reduce the noise and reconstruct high-quality temporal data streams is required for VI analysis. In this study, a data reconstruction method for MODIS NDVI is proposed to restore bad or missing data based on the statistical properties of the oscillations in the NDVI temporal dynamics. The first derivatives enable us to examine the monotonic properties of a function in the data stream and to detect anomalous changes, such as sudden spikes and drops. In this approach, only noisy data are corrected, while the other data are left intact to preserve the detailed temporal dynamics for further VI analysis. The proposed method was successfully tested and evaluated with simulated data and NDVI time series data covering Baekdu Mountain, located in the northern part of North Korea, over the period of interest from 2006 to 2012. The results show that it can be effectively employed as a preprocessing method for data reconstruction in MODIS NDVI analysis.

Multitemporal MODIS 식생 지수 (VI) 자료는 식생 활동의 프로파일을 제공하기 때문에 환경 및 기후 변화에 대한 식생 모니터링 연구에 널리 사용되고 있다. 그러나 MODIS 데이터에는 구름이나 대기 변동성 및 계측기 문제로 인해 노이즈가 발생하여 NDVI 시계열 데이터 분석과 애플리케이션 응용에 있어서 자료 정확성에 문제가 생기게 된다. 이러한 이유로, NDVI 자료를 이용한 VI 분석을 위해서는 잡음을 줄이고 고품질의 시계열 데이터 스트림을 재구성하기위한 전 처리가 필요하다. 본 연구에서는 NDVI 시계열 자료의 통계적 특성을 기반으로 불량 데이터 또는 미관측 데이터를 복원하기 위해 MODIS NDVI에 대한 데이터 재구성 방법을 제안하고 있다. 데이터 스트림 함수의 속성을 검사하면 급격한 증가나 감소와 같은 비정상적인 변화를 감지 할 수 있다. 본 연구에 제안하고 있는 방법은 정상적인 자료의 세부적 특징은 그대로 유지하면서 노이즈 자료만 수정하는 방향으로 자료를 복원할 수 있다. 제안된 기법은 시뮬레이션 데이터와 2006년부터 2012년까지의 북한지역 백두산을 대상으로 NDVI 시계열 자료를 사용하여 테스트하였고 시뮬레이션 테스트에서는 기존 wavelet이나 Gaussian 방법에 비해 본 방법이 에러율을 평균 70% 이상 줄일 수 있어 제안된 방법이 노이스가 있는 시계열 자료의 데이터 재구성에 있어 효과적임을 입증하였다.

Keywords

References

  1. Beck, P. S., Atzberger C., Hogda, K. A., "Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI", Remote Sensing of Environment, vol. 100, pp. 321-334, 2006. DOI: https://doi.org/10.1016/j.rse.2005.10.021
  2. Bloomfield, P. 1976. Fourier Analysis of Time Series: An Introduction, John Wiley & Sons, New York.
  3. Bruce, L. M., Mathur, A., Byrd, J. D., "Denoising and wavelet based feature extraction of MODIS multi-temporal vegetation signatures", Geoscience and Remote Sensing, vol. 43, no. 1, pp. 67-77, 2006. DOI: https://doi.org/10.2747/1548-1603.43.1.67
  4. Chen, J., Jonsson P., and Tamura, M. A., " simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter.", Remote Sensing of Environment, vol. 91, pp. 332-344, 2004. DOI: https://doi.org/10.1016/j.rse.2004.03.014
  5. Cihlar, J., "Identification of contaminated pixels in AVHRR composite images for studies of land biosphere", Remote Sensing of Environment, vol. 56, pp. 149-153, 1996. DOI: https://doi.org/10.1016/0034-4257(95)00190-5
  6. Davis, J. C. Statistics and Data Analysis in Geology, 2nd Edition, J. Wiley and Sons, New York, 1986.
  7. Dijk, A. V., Callis, S. L., Sakamoto, C. M., Decker, W.L., "Smoothing vegetation index profiles: an alternative method for reducing radiometric disturbance in NOAA/AVHRR data", Photogrammetric Engineering & Remote Sensing, vol. 53, pp. 1059-1067, 1987.
  8. Gu, J., Li, X., Huang, C., Okin, G. S., " Simplified data assimilation method for reconstructing time-series MODIS NDVI data", Advanced Space Research, vol. 44, pp. 501-509, 2009. DOI: https://doi.org/10.1016/j.asr.2009.05.009
  9. Hird, J. N., and McDermid, G. J., "Noise reduction of NDVI time series: An empirical comparison of selected techniques", Remote Sensing of Environment, vol. 113, pp. 248-258, 2009. DOI: https://doi.org/10.1016/j.rse.2008.09.003
  10. Ki Tae Yoon, Eel Hea Cho, Jooyoup Lee, "A Study on Gesture Interface through User Experience", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology vol. 7, no. 6, pp. 839-849, June 2017. DOI: http://dx.doi.org/10.14257/ajmahs.2017.06.60
  11. Hyung Woo Park, Myung-Jin Bae, "A Study on the Acoustic Transfer Characteristics using Fingers", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 7, no. 5, pp. 837-844, May 2017. DOI: http://dx.doi.org/10.14257/ajmahs.2017.05.06
  12. Sang-Hyun Kim, Gil-Ja So, "Block Based Extraction of Excessive Disparity Regions Using Automatic Binarization", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 5, no. 4, pp. 91-100, August 2015, DOI: http://dx.doi.org/10.14257/AJMAHS.2015.08.56
  13. Young-Jung Yu, Seong-Ho Park, Sang-Ho Moon, Yeon-Jun Choi, "A Study on Face Contour Line Extraction using Adaptive Skin Color", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 7, no. 3, pp. 383-391, March 2017. DOI: http://dx.doi.org/10.14257/AJMAHS.2017.03.66
  14. Ji-Hun Lee, Doo-Hyun Choi, "Palm Lines Extraction on a High Resolution Image using Mosaic-like Metho", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 6, no. 3, pp. 9-17, March 2016. DOI: http://dx.doi.org/10.14257/AJMAHS.2016.03.07
  15. Holben, B. N., "Characteristic of maximum value composite images for temporal AVHRR data. International Journal of Remote Sensing, vol. 7, no. 11, pp. 1417-1434, 1986. DOI: https://doi.org/10.1080/01431168608948945
  16. Huete, A. R., Didan K., Miura, T., Rodrigueza, E.P., Gaoa, X., Ferreira, L.G., "Overview of the radiometric and biophysical performance of the MODIS vegetation indices", Remote Sensing of Environment, vol. 83, pp. 195-213, 2002. DOI: https://doi.org/10.1016/S0034-4257(02)00096-2
  17. Huete, A. R., Liu, H., "An error and sensitivity analysis of the atmospheric and soil-correcting variants of the NDVI for the MODIS-EOS", IEEE Trans. Geoscience and Remote Sensing, vol. 32, no. 4, pp. 897-905, 1994. DOI: https://doi.org/10.1109/36.298018
  18. Jakubauskas, M. E., Legates, D. R., Kastens, J. H. "Harmonic Analysis of Time-Series AVHRR NDVI Data", Photogrammetric Engineering & Remote Sensing, vol. 67, no. 4, pp. 461-470, 2001.
  19. Jonsson, P., Eklundh, L., "Seasonality extraction by function fitting to time series of satellite sensor data", IEEE Trans. Geoscience and Remote Sensing, vol. 40, no. 8, pp. 1824-1832, 2002. DOI: https://doi.org/10.1109/TGRS.2002.802519
  20. Julien, Y. Sobrino, J. A., "Comparison of cloud-reconstruction methods for time series of composite NDVI data.", Remote Sensing of Environment, vol. 114, pp. 618-625, 2010. DOI: https://doi.org/10.1016/j.rse.2009.11.001
  21. Lee, S., "Adaptive reconstruction of NDVI time series with multi-periodic harmonic model. Geoscience and Remote Sensing Symposium (IGARSS), pp. 716-719, 2011. DOI: https://doi.org/10.1109/IGARSS.2011.6049230
  22. Lovell, J. L., Graetz, R. D., "Filtering pathfinder AVHRR Land NDVI data for Australia", International Journal of Remote Sensing, vol. 22, no. 13, pp 2649-2654, 2001. DOI: https://doi.org/10.1080/01431160116874
  23. Lu, X., Liu, R., Liu J., Liang, S., "Removal of Noise by Wavelet Method to Generate High Quality Temporal Data of Terrestrial MODIS Products", Photogrammetric Engineering & Remote Sensing, vol. 73, pp. 1129-1139, 2007. DOI: https://doi.org/10.14358/PERS.73.10.1129
  24. Lunetta, R., Knight, J., Ediriwickrema, J., Lyon, J., Worthy, L., "Land-cover change detection using multi-temporal MODIS NDVI data", Remote Sensing of Environment, vol. 105, pp. 142-154, 2006. DOI: https://doi.org/10.1016/j.rse.2006.06.018
  25. Ma, M., Veroustraete, F., "Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China", Advanced Space Research, vol. 37, pp. 835-840, 2006. DOI: https://doi.org/10.1016/j.asr.2005.08.037
  26. Moody, E. G., King, M. D., Platnick, S., "Spatially complete global spectral surface albedos: value-added datasets derived from Terra MODIS land products", IEEE Trans. Geoscience and Remote Sensing, vol. 43, pp. 144-158, 2005. DOI: https://doi.org/10.1109/TGRS.2004.838359
  27. Roerink, G., Menenti, M., Verhoef, W., "Reconstructing cloudfree NDVI composites using Fourier analysis of time series", International Journal of Remote Sensing, vol. 21, no. 9, pp. 1911-1917, 2000. DOI: https://doi.org/10.1080/014311600209814
  28. Kun-Ha Suh, Eui-Chul Lee, "Physiological signal extraction based liveness detection method for face recognition system", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 6, no. 3, pp. 51-59, March 2016. DOI: http://dx.doi.org/10.14257/AJMAHS.2016.03.16
  29. Kun Ha Suh, Jiyeon Moon, Eui Chul Lee, "Image-based Measuring Heart Rate of Swimmer using Palm", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol.7, no.3, pp. 511-518, March 2017. DOI: http://dx.doi.org/10.14257/AJMAHS.2017.03.25
  30. Jae-Gon Yoo, Jong-Bae Kim, "Design and Implementation of Dangerous Driving Monitoring System Using OBD Scanner and Wearable Device", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 7, no.1, pp. 297-30, January 2017. DOI: http://dx.doi.org/10.14257/AJMAHS.2017.01.85
  31. Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich, D. A., and Randall, D. A., "A global 1 by 1 NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI", International Journal of Remote Sensing, vol. 15, no. 17, pp. 3519-3545, 1994. DOI: https://doi.org/10.1080/01431169408954343
  32. Tucker, C. J., "Red and photographic infrared linear combinations for monitoring vegetation", Remote Sensing of Environment, vol. 8, no. 2, pp. 127-150, 1979. DOI: https://doi.org/10.1016/0034-4257(79)90013-0
  33. Viovy, N., Arino, O., Belward, A.S., "The best index slope extraction (BISE): a method for reducing noise in NDVI time series", International Journal of Remote Sensing, vol. 13, no. 8, pp. 1585-1590, 1992. DOI: https://doi.org/10.1080/01431169208904212
  34. Xiao, X.M., Zhang B., Braswell, Q., "Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia", Remote Sensing of Environment, vol. 84, pp. 385-392, 2003. DOI: https://doi.org/10.1016/S0034-4257(02)00129-3
  35. Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., Reed, B. C., Huete, A., "Monitoring vegetation phenology using MODIS', Remote Sensing of Environment, vol. 84 no. 3, pp. 471-475, 2003. DOI: https://doi.org/10.1016/S0034-4257(02)00135-9