DOI QR코드

DOI QR Code

탄소전극의 질소 및 산소 도핑에 따른 바나듐 레독스-흐름전지 양극 및 음극에서의 촉매화학적 특성 연구

Performance of Carbon Cathode and Anode Electrodes Functionalized by N and O Doping Treatments for Charge-discharge of Vanadium Redox Flow Battery

  • Lim, Hyebin (Department of Chemical Engineering, University of Seoul) ;
  • Kim, Jiyeon (Department of Chemical Engineering, University of Seoul) ;
  • Yi, Jung S. (Venergate Co., Ltd.) ;
  • Lee, Doohwan (Department of Chemical Engineering, University of Seoul)
  • 투고 : 2017.02.20
  • 심사 : 2017.04.10
  • 발행 : 2017.09.30

초록

본 연구에서는 Graphite Felt (GF) 전극의 표면에 산소와 질소의 도핑을 통하여 전기화학적 특성을 개선하고, 이의 촉매화학적 효과를 바나듐 레독스 흐름전지의 양극과 음극의 특성비교를 통하여 관찰하였다. 탄소전극 표면의 산소와 질소 동시 도핑은 GF 샘플을 773 K에서 암모니아-공기 ($NH_3=50%$, $O_2=10%$) 혼합가스에 노출시켜 Chemical Vapor Deposition (CVD) 방법으로 제조하였다. 이러한 산소-질소 동시 도핑의 전기화학적 효과는 산소만으로 도핑 처리된 GF 샘플과 비교하여 분석, 평가하였다. 탄소전극 샘플들의 표면 구조와 화학적 조성은 Scanning Electron Microscopy (SEM)와 X-ray Photoelectron Spectroscopy (XPS) 방법을 통하여 분석하였다. 결과물로 얻어진 탄소전극은 바나듐 레독스-흐름전지의 양극과 음극에 동시 적용하여 충-방전 사이클을 진행하고, 각 전극이 흐름전지의 효율과 양극과 음극에서의 전기화학적 특성에 미치는 효과를 비교하여 분석하였다. 산소와 질소의 동시 도핑으로 처리된 GF 전극은 산소만으로 활성화된 전극에 비하여 흐름전지의 전압 및 에너지 효율에서 2% 이상의 향상 효과를 보여주었다. 특히, 탄소전극 표면의 산소-질소의 동시 도핑은 음극반응에서 우수한 전기화학적 특성을 유도하는 것을 확인하였다.

In this study, we investigated the electrocatalytic effects of the N and O co-doping of Graphite Felt (GF) electrode for the vanadium redox flow battery (VRFB) at the cathode and the anode reaction, respectively. The electrodes were prepared by chemical vapor deposition (CVD) with $NH_3-O_2$ at 773 K, and its effects were compared with an electrode prepared by an O doping treatment. The surface morphology and chemical composition of the electrodes were characterized by scanning electron microscopy (SEM) and photoelectron spectroscopy (XPS). The electrocatalytic properties of these electrodes were characterized in a VRFB single cell comparing the efficiencies and performance of the electrodes at the cathode, anode, and single cell level. The results exhibited about 2% higher voltage and energy efficiencies on the N-O-GF than the O-GF electrode. It was found that the N and O co-doping was particularly effective in the enhancement of the reduction-oxidation reaction at the anode.

키워드

참고문헌

  1. Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., Lu, X., Choi, D., Lemmon, J. P., and Liu, J., "Electrochemical Energy Storage for Green Grid," Chem. Rev., 111, 3577-3613 (2011). https://doi.org/10.1021/cr100290v
  2. Wang, W., Luo, Q., Li, B., Wei, X., Li, L., and Yang, Z., "Recent Progress in Redox Flow Battery Research and Development," Adv. Funct. Mater., 23, 970-986 (2013). https://doi.org/10.1002/adfm.201200694
  3. Weber, A. Z., Mench, M. M., Meyers, J. P., Ross, P. N., Gostick, J. T., and Liu, Q., "Redox Flow Batteries: A Review," J. Appl. Electrochem., 41, 1137-1164 (2011). https://doi.org/10.1007/s10800-011-0348-2
  4. Leung, P., Li, X., Ponce de Leon, C., Berlouis, L., Low, C. T. J., and Walsh, F. C., "Progress in Redox Flow Batteries, Remaining Challenges and their Applications in Energy Storage," RSC Adv., 2, 10125-10156 (2012). https://doi.org/10.1039/c2ra21342g
  5. Sun, B. T., and Skyllas-Kazacos, M., "Modification of Graphite Electrode Materials For Vanadium Redox Flow Battery Application-I. Thermal Treatment," Electrochim. Acta, 37, 1253-1260 (1992). https://doi.org/10.1016/0013-4686(92)85064-R
  6. Flox, C., Rubio-Garcia, J., Skoumal, M., Andreu, T., Morante, R.R., "Thermo-Chemical Treatments Based on $NH_3/O_2$ for Improved Graphite-Based Fiber Electrodes in Vanadium Redox Flow Batteries," Carbon, 60, 280-288 (2013). https://doi.org/10.1016/j.carbon.2013.04.038
  7. Suarez, D. J., Gonzalez, Z., Blanco, C., Granda, M., Menendez, R., and Santamaria, R., "Graphite Felt Modified with Bismuth Nanoparticles as Negative Electrode in a Vanadium Redox Flow Battery," ChemSusChem, 7, 914-918 (2014). https://doi.org/10.1002/cssc.201301045
  8. Wang, W. H., and Wang, X. D., "Investigation of Ir-modified Carbon Felt as the Positive Electrode of an All-Vanadium Redox Flow Battery," Electrochim. Acta, 52, 6755-6762 (2007). https://doi.org/10.1016/j.electacta.2007.04.121
  9. Li, B., Gu, M., Nie, Z., Wei, X., Wang, C., Sprenkle, V., and Wang, W., "Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery," Nano Lett., 14, 158-165 (2013).
  10. Wu, X., Xu, H., Lu, L., Zhao, H., Fu, J., Shen, Y., Xu, P., and Dong, Y., "$PbO_2$-Modified Graphite Felt as the Positive Electrode for an All-Vanadium Redox Flow Battery," J. Power Sources, 250, 274-278 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.021
  11. Tseng, T.-M., Huang, R.-H., Huang, C.-Y., Liu, C.-C., Hsueh, K.-L., and Shieu, F.-S., "Carbon Felt Coated with Titanium Dioxide/Carbon Black Composite as Negative Electrode for Vanadium Redox Flow Battery," J. Electrochem. Soc., 161, A1132-A1138 (2014). https://doi.org/10.1149/2.102406jes
  12. Shen, Y., Xu, H., Xu, P., Wu, X., Dong, Y., and Lu, L., "Electrochemical Catalytic Activity of Tungsten Trioxide-Modified Graphite Felt Toward $VO^{2+}/VO_2{^+}$ Redox Reaction," Electrochim. Acta, 132, 37-41 (2014). https://doi.org/10.1016/j.electacta.2014.03.107
  13. Kim, J., Lim, H., Jyoung, J., Lee, E., Yi, J., and Lee, D., "High Electrocatalytic Performance of N and O Atomic Co-Functionalized Carbon Electrodes for Vanadium Redox Flow Battery," Carbon, 111, 592-601 (2017). https://doi.org/10.1016/j.carbon.2016.10.043
  14. Jin, J., Fu, X., Liu, Q., Liu, Y., Wei, Z., Niu, K., and Zhang, J., "Identifying the Active Site in Nitrogen-Doped Graphene for the $VO^{2+}/VO_2{^+}$ Redox Reaction," ACS Nano, 6, 4764-4773 (2013).
  15. Ponce de Leon, C., Frias-Ferrer, A., Gonzalez-Garcia, J., Szanto, D. A., and Walsh, F. C., "Redox Flow Cells for Energy Conversion," J. Power Sources, 160, 716-732 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.095