DOI QR코드

DOI QR Code

Assessment of Cervical Cancer with a Parameter-Free Intravoxel Incoherent Motion Imaging Algorithm

  • Becker, Anton S. (Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich) ;
  • Perucho, Jose A. (Department of Diagnostic Radiology, The University of Hong Kong) ;
  • Wurnig, Moritz C. (Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich) ;
  • Boss, Andreas (Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich) ;
  • Ghafoor, Soleen (Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich) ;
  • Khong, Pek-Lan (Department of Diagnostic Radiology, The University of Hong Kong) ;
  • Lee, Elaine Y.P. (Department of Diagnostic Radiology, The University of Hong Kong)
  • Received : 2016.09.11
  • Accepted : 2016.11.13
  • Published : 2017.06.01

Abstract

Objective: To evaluate the feasibility of a parameter-free intravoxel incoherent motion (IVIM) approach in cervical cancer, to assess the optimal b-value threshold, and to preliminarily examine differences in the derived perfusion and diffusion parameters for different histological cancer types. Materials and Methods: After Institutional Review Board approval, 19 female patients (mean age, 54 years; age range, 37-78 years) gave consent and were enrolled in this prospective magnetic resonance imaging study. Clinical staging and biopsy results were obtained. Echo-planar diffusion weighted sequences at 13 b-values were acquired at 3 tesla field strength. Single-sliced region-of-interest IVIM analysis with adaptive b-value thresholds was applied to each tumor, yielding the optimal fit and the optimal parameters for pseudodiffusion ($D^*$), perfusion fraction ($F_p$) and diffusion coefficient (D). Monoexponential apparent diffusion coefficient (ADC) was calculated for comparison with D. Results: Biopsy revealed squamous cell carcinoma in 10 patients and adenocarcinoma in 9. The b-value threshold (median [interquartile range]) depended on the histological type and was $35(22.5-50)s/mm^2$ in squamous cell carcinoma and $150(100-150)s/mm^2$ in adenocarcinoma (p < 0.05). Comparing squamous cell vs. adenocarcinoma, $D^*$ ($45.1[25.1-60.4]{\times}10^{-3}mm^2/s$ vs. $12.4[10.5-21.2]{\times}10^{-3}mm^2/s$) and $F_p$ (7.5% [7.0-9.0%] vs. 9.9% [9.0-11.4%]) differed significantly between the subtypes (p < 0.02), whereas D did not ($0.89[0.75-0.94]{\times}10^{-3}mm^2/s$ vs. $0.90[0.82-0.97]{\times}10^{-3}mm^2/s$, p = 0.27). The residuals did not differ (0.74 [0.60-0.92] vs. 0.94 [0.67-1.01], p = 0.32). The ADC systematically underestimated the magnitude of diffusion restriction compared to D (p < 0.001). Conclusion: The parameter-free IVIM approach is feasible in cervical cancer. The b-value threshold and perfusion-related parameters depend on the tumor histology type.

Keywords

Acknowledgement

Supported by : General Research Fund

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108 https://doi.org/10.3322/caac.21262
  2. Ronco G, Dillner J, Elfstrom KM, Tunesi S, Snijders PJ, Arbyn M, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet 2014;383:524-532 https://doi.org/10.1016/S0140-6736(13)62218-7
  3. Wakefield JC, Downey K, Kyriazi S, deSouza NM. New MR techniques in gynecologic cancer. AJR Am J Roentgenol 2013;200:249-260 https://doi.org/10.2214/AJR.12.8932
  4. Koh WJ, Greer BE, Abu-Rustum NR, Apte SM, Campos SM, Chan J, et al. Cervical cancer. J Natl Compr Canc Netw 2013;11:320-343 https://doi.org/10.6004/jnccn.2013.0043
  5. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505 https://doi.org/10.1148/radiology.168.2.3393671
  6. Zhou Y, Liu J, Liu C, Jia J, Li N, Xie L, et al. Intravoxel incoherent motion diffusion weighted MRI of cervical cancer -correlated with tumor differentiation and perfusion. Magn Reson Imaging 2016;34:1050-1056 https://doi.org/10.1016/j.mri.2016.04.009
  7. Lee EY, Yu X, Chu MM, Ngan HY, Siu SW, Soong IS, et al. Perfusion and diffusion characteristics of cervical cancer based on intraxovel incoherent motion MR imaging-a pilot study. Eur Radiol 2014;24:1506-1513 https://doi.org/10.1007/s00330-014-3160-7
  8. Lorenz CH, Pickens DR 3rd, Puffer DB, Price RR. Magnetic resonance diffusion/perfusion phantom experiments. Magn Reson Med 1991;19:254-260 https://doi.org/10.1002/mrm.1910190211
  9. Alison M, Chalouhi GE, Autret G, Balvay D, Thiam R, Salomon LJ, et al. Use of intravoxel incoherent motion MR imaging to assess placental perfusion in a murine model of placental insufficiency. Invest Radiol 2013;48:17-23 https://doi.org/10.1097/RLI.0b013e318271a5f8
  10. Wurnig MC, Donati OF, Ulbrich E, Filli L, Kenkel D, Thoeny HC, et al. Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magn Reson Med 2015;74:1414-1422 https://doi.org/10.1002/mrm.25506
  11. Stieb S, Boss A, Wurnig MC, Ozbay PS, Weiss T, Guckenberger M, et al. Non-parametric intravoxel incoherent motion analysis in patients with intracranial lesions: test-retest reliability and correlation with arterial spin labeling. Neuroimage Clin 2016;11:780-788 https://doi.org/10.1016/j.nicl.2016.05.022
  12. Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 2011;196:1351-1361 https://doi.org/10.2214/AJR.10.5515
  13. Landis JR, King TS, Choi JW, Chinchilli VM, Koch GG. Measures of agreement and concordance with clinical research applications. Stat Biopharm Res 2012;3:185-209
  14. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 1995;57:289-300
  15. Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer Science & Business Media, 2009
  16. Winfield JM, Orton MR, Collins DJ, Ind TE, Attygalle A, Hazell S, et al. Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI. Eur Radiol 2017;27:627-636 https://doi.org/10.1007/s00330-016-4417-0
  17. Lee EY, Hui ES, Chan KK, Tse KY, Kwong WK, Chang TY, et al. Relationship between intravoxel incoherent motion diffusion-weighted MRI and dynamic contrast-enhanced MRI in tissue perfusion of cervical cancers. J Magn Reson Imaging 2015;42:454-459 https://doi.org/10.1002/jmri.24808
  18. Fujimoto J, Sakaguchi H, Hirose R, Ichigo S, Tamaya T. Expression of vascular endothelial growth factor (VEGF) and its mRNA in uterine cervical cancers. Br J Cancer 1999;80:827-833 https://doi.org/10.1038/sj.bjc.6690428
  19. Saijo Y, Furumoto H, Yoshida K, Nishimura M, Irahara M. Clinical significance of vascular endothelial growth factor expression and microvessel density in invasive cervical cancer. J Med Invest 2015;62:154-160 https://doi.org/10.2152/jmi.62.154
  20. Eberhardt C, Wurnig MC, Wirsching A, Rossi C, Rottmar M, Ozbay PS, et al. Intravoxel incoherent motion analysis of abdominal organs: computation of reference parameters in a large cohort of C57Bl/6 mice and correlation to microvessel density. MAGMA 2016;29:751-763 https://doi.org/10.1007/s10334-016-0540-9
  21. Lee HJ, Rha SY, Chung YE, Shim HS, Kim YJ, Hur J, et al. Tumor perfusion-related parameter of diffusion-weighted magnetic resonance imaging: correlation with histological microvessel density. Magn Reson Med 2014;71:1554-1558 https://doi.org/10.1002/mrm.24810
  22. Shimada M, Nishimura R, Nogawa T, Hatae M, Takehara K, Yamada H, et al. Comparison of the outcome between cervical adenocarcinoma and squamous cell carcinoma patients with adjuvant radiotherapy following radical surgery: SGSG/TGCU Intergroup Surveillance. Mol Clin Oncol 2013;1:780-784 https://doi.org/10.3892/mco.2013.112
  23. Katanyoo K, Sanguanrungsirikul S, Manusirivithaya S. Comparison of treatment outcomes between squamous cell carcinoma and adenocarcinoma in locally advanced cervical cancer. Gynecol Oncol 2012;125:292-296 https://doi.org/10.1016/j.ygyno.2012.01.034
  24. Galic V, Herzog TJ, Lewin SN, Neugut AI, Burke WM, Lu YS, et al. Prognostic significance of adenocarcinoma histology in women with cervical cancer. Gynecol Oncol 2012;125:287-291 https://doi.org/10.1016/j.ygyno.2012.01.012
  25. Lin G, Lai CH, Tsai SY, Lin YC, Huang YT, Wu RC, et al. 1H MR spectroscopy in cervical carcinoma using external phase array body coil at 3.0 Tesla: prediction of poor prognostic human papillomavirus genotypes. J Magn Reson Imaging 2017;45:899-907 https://doi.org/10.1002/jmri.25386
  26. McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA. Diffusion-weighted MRI in cervical cancer. Eur Radiol 2008;18:1058-1064 https://doi.org/10.1007/s00330-007-0843-3
  27. Lemke A, Stieltjes B, Schad LR, Laun FB. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 2011;29:766-776 https://doi.org/10.1016/j.mri.2011.03.004
  28. Lemke A, Laun FB, Klauss M, Re TJ, Simon D, Delorme S, et al. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 2009;44:769-775 https://doi.org/10.1097/RLI.0b013e3181b62271

Cited by

  1. Age of Data in Contemporary Research Articles Published in Representative General Radiology Journals vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1172
  2. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  3. The Value of IVIM DWI in Combination with Conventional MRI in Identifying the Residual Tumor After Cone Biopsy for Early Cervical Carcinoma vol.26, pp.8, 2017, https://doi.org/10.1016/j.acra.2018.09.027
  4. B-Value Optimization in the Estimation of Intravoxel Incoherent Motion Parameters in Patients with Cervical Cancer vol.21, pp.2, 2017, https://doi.org/10.3348/kjr.2019.0232
  5. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  6. Value of integrated PET-IVIM MR in assessing metastases in hypermetabolic pelvic lymph nodes in cervical cancer: a multi-parameter study vol.30, pp.5, 2017, https://doi.org/10.1007/s00330-019-06611-z
  7. Combinative evaluation of primary tumor and lymph nodes to predict pelvic lymphatic metastasis in cervical cancer: an integrated PET-IVIM MRI study vol.20, pp.1, 2017, https://doi.org/10.1186/s40644-020-00298-y