DOI QR코드

DOI QR Code

Sweeping Center Setting Automation for Wavelength Swept Laser used in SS-OCT

SS-OCT용 파장 스위핑 레이저를 위한 스위핑 중심 세팅 자동화

  • Eom, Jinseob (Department of Electronics Engineering, The School of Information Technology, Kangwon National University)
  • 엄진섭 (강원대학교 IT대학 전자공학과)
  • Received : 2017.07.28
  • Accepted : 2017.09.19
  • Published : 2017.09.30

Abstract

In this paper, the automation of sweeping center setting for wavelength swept laser used in SS-OCT has implemented. For 3 regions where the initial FFP-TF pass wavelength can be located, each different DC voltage pattern is applied to FFP-TF. Through its performance test to the laser, fast and exact setting to sweeping central wavelength, flat sweeping with ${\pm}0.5dB$ fluctuation range, and 10 mW average optical power were obtained. This shows that the realized automatic setting process can replace an inconvenient manual setting operation used for current wavelength swept laser. Additionally it cuts costs for optical spectrum analyzer necessary to laser spectrum monitoring.

Keywords

References

  1. Mark Brezinski, Optical Coherence Tomography : Principles and Applications, Elsevier, 2006.
  2. David Huang James G. Fujimoto, "Optical Coherence Tomography", Science, Vol. 254, pp. 1178-1181, 1991. https://doi.org/10.1126/science.1957169
  3. Y. K. Kim, "A study on time-domain optical coherence tomography using optical path delay of PZT", A doctoral dissertation of Kyung Hee University, 2011.
  4. Y. Yasuno, V. D. Madjarova, S. Makita, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments", Opt. Express, Vol. 13, pp. 10652-10664, 2005. https://doi.org/10.1364/OPEX.13.010652
  5. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography", Opt. Express, Vol. 11, pp. 889-894, 2003. https://doi.org/10.1364/OE.11.000889
  6. M. A. Choma, M. V. Sarunic, C. Yang, J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography", Opt. Express, Vol. 11, pp. 2183-2189, 2003. https://doi.org/10.1364/OE.11.002183
  7. H. S. Kim, M. Y. Namgoong, J. R. Lee, J. S. Eom, "Realization of Swept Source-Optical Coherence Tomography System using Loop Mirror within Reference Arm", COOC 2007, Vol. 14, pp.402-403, 2007.
  8. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging : design and scaling principles", Opt. Express, Vol. 13, pp. 3513-3528, 2005. https://doi.org/10.1364/OPEX.13.003513
  9. J. S. Eom, "Realization of swept source-optical coherence tomography system using wavelength swept source based on FDML method", J. Sensor Sci. & Tech., Vol. 20, No. 1, pp.46-52, 2011. https://doi.org/10.5369/JSST.2011.20.1.46
  10. R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography", Opt. Express, Vol. 14, pp.3225-3237, 2006. https://doi.org/10.1364/OE.14.003225
  11. Eugene Hecht, Optics, Addison-Wesley, 1987.
  12. A. G. Podoleanu, "Unbalanced versus balanced operation in an optical coherence tomography system", Appl. Opt. Vol. 39, pp.173-182, 2000. https://doi.org/10.1364/AO.39.000173
  13. U. J. You, J. Y. Heo, D. H. Cho, K. W. Chang, J. G. Seo, B. S. Lee, Y. H. Cho, J. H. Moon, B. K. Park, "A Spectroscopic research for development of optical fiber pH sensor", J. Sensor Sci. & Tech., Vol. 18, No. 5, pp.365-371, 2009. https://doi.org/10.5369/JSST.2009.18.5.365