DOI QR코드

DOI QR Code

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD

CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석

  • 정종길 (가천대학교 기계공학과) ;
  • 김광추 (한국전력기술(주) 기계기술그룹) ;
  • 윤준규 (가천대학교 기계공학과)
  • Received : 2017.02.15
  • Accepted : 2017.08.15
  • Published : 2017.10.01

Abstract

A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

고압의 파이프 파단 시 파이프 내에 있던 유체가 고속으로 대기로 분출될 때 압축성유동을 동반하는 초음속제트가 발생한다. 이러한 초음속제트는 일반적으로 복잡한 비정상거동을 보여줄 수 있다. 본 연구는 이러한 고압파이프에서 분출되는 초음속제트에 의해 생성되는 압축성유동을 고찰하기 위하여 전산유체역학 해석이 수행되었다. 분출기체의 종류 및 파이프직경 변화에 따른 비정상유동 특성을 해석하기 위해 SST $k-{\omega}$ 난류모델이 채택되었다. 전산해석 시 기본 경계조건은 파이프직경 10 cm, 제트 압력비 5, 기체온도 300 K로 가정하였다. 그 해석결과로 초음속제트로 인해 생성되는 충격파의 거동이 관찰되었고, 간접적인 영향으로 폭풍파도 발생됨을 알 수 있었다. 기체의 분자량이 가장 작은 $H_2$의 압력파 특성은 안전영역까지의 거리가 가장 짧았으며, 분자량이 비슷한 $N_2$, 공기 및 $O_2$는 큰 차이가 없었다. 또한 파이프직경이 커져 제트에 의한 영향범위도 더욱 증대됨을 알 수 있었다.

Keywords

References

  1. Bowden, F. P. and Brunton, J. H., 1958, "Damage to Solids by Liquid Impact at Supersonic Speeds," Nature, Vol. 181, No. 4613, pp. 873-875. https://doi.org/10.1038/181873a0
  2. Jeong, S. M. and Jang, S. M., 2012, "A Design and Development of Multi Air Gun for Suction and Shooting a Jet of Compressed Air," Journal of the Korea Academia-Industrial Cooperation Society, Vol. 13, No. 11, pp. 4944-4949. https://doi.org/10.5762/KAIS.2012.13.11.4944
  3. Jin, Y. M., Kwon, H. B., Hong, S. W. and Rho, J. H., 2015, "A Study of the Viscous Effect to the Compression Wave When a High-speed Train Passing Through the Tunnel," Korean Society for Railway, 2015(1), pp. 652-657.
  4. Kim, D. H., Park, W. G. and Jang, C. M., 2012, "Numerical Multi-phase Flow Analysis for Highspeed Underwater Vehicle with Compressible Effect," Korean Society of Computational Fluids Engineering, 2012(2), pp. 119-122.
  5. Lee, S. S. and Park, K. R., 2013, "Numerical Analysis for Shock Wave Propagation in Tube," The Wind Engineering Institute of Korea, Vol. 17, No. 3, pp. 85-91.
  6. Park, J. O., Kim, G. W. and Kim, H. D., 2013, "Experimental Study of the Shock Wave Dynamics in Micro Shock Tube," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 5 pp. 54-59. https://doi.org/10.6108/KSPE.2013.17.5.054
  7. Park, J. O., Kim, G. W. and Rasel, M. A. I. and Kim, H. D., 2015, "Experimental Study of Micro Shock-tube Flow," Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 5 pp. 385-390. https://doi.org/10.3795/KSME-B.2015.39.5.385
  8. Mohamed, K. and Paraschivoiu, M., 2004, "Real Gas Numerical Simulation of Hydrogen Flow," International Energy Conversion Engineering Conference Technical Papers, pp. 727-740.
  9. Kam, H. D. and Kim, J. S., 2013, "Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 1, pp. 18-25. https://doi.org/10.6108/KSPE.2013.17.1.018
  10. ANSYS FLUENT Theory Guide 16.1 ANSYS Inc., 2016
  11. Aungier, R. H., 1995, "A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications," J. Fluids Eng 117(2), pp. 277-281. https://doi.org/10.1115/1.2817141
  12. Anderson, J. D., 2011, "Fundamentals of Aerodynamics," Fifth Edition, Mcgraw Hill, pp. 515- 543.
  13. Yu, Q. and Gronig, H., 1996, "Shock Wave from an Open-ended Shock Tube with Different Shapes," Shock waves, Vol. 6, No. 5, pp. 249-258. https://doi.org/10.1007/BF02535738
  14. ANP-10318NP, Revision. 1, 2013, "Pipe Rupture External Loading Effects on U.S. EPR Essential Structures, Systems, and Components," Technical Report of AREVA NP Inc.