DOI QR코드

DOI QR Code

Design and efficiency of the variance component model control chart

분산성분모형 관리도의 설계와 효율

  • Received : 2017.07.05
  • Accepted : 2017.08.31
  • Published : 2017.09.30

Abstract

In the standard control chart assuming a simple random model, we estimate the process variance without considering the between-sample variance. If the between-sample exists in the process, the process variance is under-estimated. When the process variance is under-estimated, the narrower control limits result in the excessive false alarm rate although the sensitivity of the control chart is improved. In this paper, using the variance component model to incorporate the between-sample variance, we set the control limits using both the within- and between-sample variances, and evaluate the efficiency of the control chart in terms of the average run length (ARL). Considering the most widely used control chart types such as ${\bar{X}}$, EWMA and CUSUM control charts, we compared the differences between two cases, Case I and Case II, where the between-sample variance is ignored and considered, respectively. We also considered the two cases when the process parameters are given and estimated. The results showed that the false alarm rate of Case I increased sharply as the between-sample variance increases, while that of Case II remains the same regardless of the size of the between-sample variance, as expected.

단순확률모형을 고려하는 표준관리도에서는 표본간 분산을 고려하지 않고 공정분산을 추정한다. 표본간 분산이 존재하는 경우에는, 공정분산이 과소추정된다. 공정분산이 과소추정되면 좁아진 관리한계로 인해 관리도의 민감도는 향상되지만 과도한 오경보율을 발생시킨다. 이 논문에서는 공정모형으로 분산성분모형, 즉 변동의 원인을 표본내 분산과 표본간 분산으로 구분하는 확률모형을 고려한다. 관리한계는 표본내 분산과 표본간 분산을 모두 사용하여 설정하고 그에 따른 평균런길이를 통하여 효율을 살펴 보았다. 관리형태는 가장 널리 사용되는 ${\bar{X}}$, EWMA, CUSUM 관리도를 고려하였다. 관리한계 설정에서 표본내 분산만을 사용한 경우 (Case I)와 표본간 분산도 함께 사용한 경우 (Case II)를 통해 관리도의 효율을 비교하였다. 또한, 공정 모수가 주어진 경우와 추정된 두 경우에 대해서도 관리도의 효율을 비교하였다. 그 결과, 표본간 분산이 증가할 때 Case I의 오경보율은 급격히 증가한 반면 Case II의 경우에는 동일하게 유지됨을 알 수 있었다.

Keywords

References

  1. Choi, J. S. (2014). Projection analysis for two-way variance components. Journal of the Korean & Information Science Society, 25, 547-554. https://doi.org/10.7465/jkdi.2014.25.3.547
  2. Choi, J. S. (2015). The analysis of random effects model by projections. Journal of the Korean & Information Science Society, 26, 31-39. https://doi.org/10.7465/jkdi.2015.26.1.31
  3. Laubscher, N. F. (1996). A variance components model for statistical process control. South African Statistical Journal, 30, 27-47.
  4. Mullins, E. (2003). Statistics for the quality control chemistry laboratory, The Royal Statistical Society of Chemistry, Cambridge.
  5. Park, C. (1997). Design of xbar and ewma charts in a variance components model. Communications in Statistics : Theory and Methods, 27, 659-672.
  6. Park, C. and Lee, J. (2014). Statistical process control, Freeacademy, Seoul.
  7. Park, C. (2016). Average run length calculation of the ewma control chart using the first passage time of the markov process. The Korean Journal of Applied Statistics, 30, 1-12.
  8. Pascual, F. G. and Park, C. (2017). Control charts for monitoring the mean and percentiles of weibull processes with variance components. submitted to International Journal of Production Research.
  9. Tsai, T. and Hsieh, Y. (2009). Simulated shewhart control chart for monitoring variance components. International Journal of Reliability, Quality and Safety Engineering, 16, 1-22. https://doi.org/10.1142/S0218539309003265
  10. Wetherill, G. B. and Brown, D. W. (1991). Statistical process control: theory and practice, Springer, Chapman and Hall.
  11. Woodall, W. H. and Thomas, E. V. (1995). Statistical process control with several components of common cause variability. IIE Transactions, 27, 757-764. https://doi.org/10.1080/07408179508936792