DOI QR코드

DOI QR Code

다점 확률분포 모델을 이용한 초임계 압력 액체질소 제트 해석

Numerical Analysis of Cryogenic Liquid Nitrogen Jets at Supercritical Pressures using Multi-Environment Probability Density Function approach

  • 투고 : 2017.07.29
  • 심사 : 2017.09.08
  • 발행 : 2017.09.30

초록

This paper describes numerical modeling of transcritical and supercritical fluid flows within a liquid propellant rocket engine. In the present paper, turbulence is modeled by standard $k-{\varepsilon}$ model. A conserved scalar approach in conjunction with multi-environment probability density function model is used to account for the turbulent mixing of real-fluids in the transcritical and supercritical region. The two real-fluid equations of state and dense-fluid correction schemes for mixtures are used to construct thermodynamic data library based on the conserved scalar. In this study, calculations are made on two cryogenic nitrogen jets under different chamber pressures. Sensitivity analysis for two different real-fluid equations of sate is particularly emphasized. Based on numerical results, precise structures of cryogenic nitrogen jets are discussed in detail. Numerical results show that the current real-fluid model can predict the essential features of the cryogenic liquid nitrogen jets.

키워드

참고문헌

  1. J. Telaar, G. Schneider, J. Hussong and W. Mayer, "Cryogenic jet injection: Description of test case RCM1" in: Prooceedings 2nd Internaitional Workshop on Rocket Combustion Modeling, Lampoldshausen, Germay, March, 2001, pp. 25-27.
  2. W. Mayer, J. Tellar, R. Branam, G. Schneider and J. Hussong,"Raman measurement of cryogenic injection at supercritical pressure", Heat and Mass Transfer, Vol. 39, 2003, pp. 709-719. https://doi.org/10.1007/s00231-002-0315-x
  3. R. Branam and W. Mayer, "Characterisation of Cryogenic Injection at Supercritical pressure", Journal of Propulsion and Power, Vol. 19, No. 3, 2003, pp. 342-355. https://doi.org/10.2514/2.6138
  4. M. Oschwald, J.J. Smith, R. Branam, J. Hussong, A. Shick, B. Chehroudi and D. Talley, "Injection of Fluids into Supercritical Environments", Combustion Science and Technology, Vol. 178, 2006, pp. 49-100. https://doi.org/10.1080/00102200500292464
  5. M. Habiballah, M. Orain, F. Grisch, L. Vingert and P. Gicquel, "Experimental studies of high-pressure cryogenic flames on the Mascotte facility", Combustion Science and Technology, Vol. 178, 2006, pp. 101-128. https://doi.org/10.1080/00102200500294486
  6. L. Vingert, A. Nicole and M. Habiballah, "The Mascotte single injector 60 bar het test for code validationtest-case specifications and some more experimental data", in: Proceedings of the 3rd International Workshop Rocket Combustion Modeling, Snecma, March, 2006.
  7. T. H. Kim, S. K. Kim, Y. M. Kim, "Analysis for Local Structure of Gaseus Hydrogen/liquid Oxygen Flame at Supercritical Pressures", J. ILASS-KOREA, Vol. 15, No. 4, 2010, pp. 182-188.
  8. T. H. Kim, S. K. Kim, Y. M. Kim, "Analysis of Gaseous Hydrogen/liquid Oxygen Combsution Processes at Supercritical State", J. ILASS-KOREA, Vol. 15, No. 4, 2010, pp. 189-194.
  9. S. K. Kim, H. S. Choi, Y. M. Kim, "Thermodynamic modeling based on a generalized cubic equation of state for kerosene/Lox rocket combustion", Combustion and Flame, Vol. 159, 2012, pp. 1351-1365. https://doi.org/10.1016/j.combustflame.2011.10.008
  10. T. Kim, Y. Kim, S. Kim, "Numerical study of cryogenic liquid nitrogen jets at supercritical pressures", Journal of Super Critical Fluids, Vol. 56, 2011, pp. 152-163. https://doi.org/10.1016/j.supflu.2010.12.008
  11. H. Müller, C. A. Niedermeir, J. Matheis, M. Pfitzner, S. Hickel, "Large-eddy simulation of nitrogen injection at trans-and supercritical conditions", Physics of Fluids, Vol. 28, No. 1, 2016.
  12. G. Soave, "Equilibrium constant form a modified Redlich-Kwong equation of state", Chemical Engineering Science, Vol. 27, No. 6, 1972, pp. 1197-1203. https://doi.org/10.1016/0009-2509(72)80096-4
  13. Michael S. Graboski, Thomas E. Daubert. "A Modified Soave Equation of State for Phase Equilibrium Calculations. 3. Systems Containing Hydrogen", Ind. Eng. Chem. Process Des. Dev., Vol. 17, No. 4, 1978, pp. 443-448. https://doi.org/10.1021/i260068a009
  14. Ding-Yu Peng, Donald B. Robinson, "A New Two-Constant Equation of State", Industrial and Engineering Chemical Fundamental, Vol. 15, No. 1, 1976, pp. 59-64.
  15. T. H Chung, M. Ajlan, L. L. Lee, K E. Starling, "Generalized multiparameter correlation for nonpolar and polar fluid transport properties", Ind. Chem. Eng. Res., Vol. 24, No. 4, 1988, pp. 671-679.
  16. James F. Ely, H. J. M. Hanley, "Prediction of transport properties. 2. Thermal conductivity of pure fluids and mixtures", Ind. Eng. Chem. Fundamen, Vol. 22, No. 1, pp. 90-97. https://doi.org/10.1021/i100009a016
  17. Hanley, H. J. M., "Prediction of the viscosity and thermal conductivity coefficients of mixtures", Cryogenics, Vol. 16, 1976, pp. 643-651. https://doi.org/10.1016/0011-2275(76)90035-7
  18. S. Takahsashi, "Preparation of a Generalized Chart for the Diffusion Coefficients of Gases at High Pressure", Chemical Engineering of JAPAN, Vol. 7, No. 6, pp. 417-420.
  19. R. O. Fox, "Computational Models for Turbulent Reacting Flows", Cambridge University Press, Cambridge, 2003.
  20. J. Lee, Y. Kim, "DQMOM based PDF transport modeling for turbulent lifted nitrogen-diluted hydrogen jet flame with autoignition", International Journal of Hydrogen and Energy, Vol. 37, 2012, pp. 18498-18508. https://doi.org/10.1016/j.ijhydene.2012.09.004
  21. J. Lee, S. Jeon, Y. Kim, "Multi-environment probability density function approach for turbulent CH4/H2 flames under the MILD combustion condition", Combustion and Flame, Vol. 162, 2015, pp. 1464-1476. https://doi.org/10.1016/j.combustflame.2014.11.014
  22. URL http://openfoam.com/
  23. R. Issa, "Solution of the implicitly discretized fluid flow equations by operator-splitting", Computational Physics, Vol. 62, Issue 1, 1986, pp. 40-65. https://doi.org/10.1016/0021-9991(86)90099-9
  24. URL http://webbook.nist.gov/chemistry/fluid/