DOI QR코드

DOI QR Code

Effect of Exogenous Proline on Metabolic Response of Tetragenococcus halophilus under Salt Stress

  • He, Guiqiang (College of Light Industry, Textile & Food Engineering, Sichuan University) ;
  • Wu, Chongde (College of Light Industry, Textile & Food Engineering, Sichuan University) ;
  • Huang, Jun (College of Light Industry, Textile & Food Engineering, Sichuan University) ;
  • Zhou, Rongqing (College of Light Industry, Textile & Food Engineering, Sichuan University)
  • Received : 2017.02.23
  • Accepted : 2017.06.23
  • Published : 2017.09.28

Abstract

This study investigated the effect of proline addition on the salt tolerance of Tetragenococcus halophilus. Salt stress led to the accumulation of intracellular proline in T. halophilus. When 0.5 g/l proline was added to hyperhaline medium, the biomass increased 34.6% (12% NaCl) and 27.7% (18% NaCl) compared with the control (without proline addition), respectively. A metabolomic approach was employed to reveal the cellular metabolic responses and protective mechanisms of proline upon salt stress. The results showed that both the cellular membrane fatty acid composition and metabolite profiling responded by increasing unsaturated and cyclopropane fatty acid proportions, as well as accumulating some specific intracellular metabolites (environmental stress protector). Higher contents of intermediates involved in glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway were observed in the cells supplemented with proline. In addition, addition of proline resulted in increased concentrations of many organic osmolytes, including glutamate, alanine, citrulline, N-acetyl-tryptophan, and mannitol, which may be beneficial for osmotic homeostasis. Taken together, results in this study suggested that proline plays a protective role in improving the salt tolerance of T. halophilus by regulating the related metabolic pathways.

Keywords

References

  1. Tanasupawat S, Thongsanit J, Okada S, Komagata K. 2002. Lactic acid bacteria isolated from soy sauce mash in Thailand. J. Gen. Appl. Microbiol. 48: 201-209. https://doi.org/10.2323/jgam.48.201
  2. Hanagata H, Shida O, Takagi H. 2003. Taxonomic homogeneity of a salt-tolerant lactic acid bacteria isolated from shoyu mash. J. Gen. Appl. Microbiol. 49: 95-100. https://doi.org/10.2323/jgam.49.95
  3. Wu C D, Liu C L, He GQ, Huang J, Zhou RQ. 2013. Characterization of a multiple-stress tolerance Tetragenococcus halophilus and application as starter culture in Chinese Horsebean-Chili-Paste manufacture for quality improvement. Food Sci. Technol. Res. 19: 855-864. https://doi.org/10.3136/fstr.19.855
  4. Cui RY, Zheng J, Wu CD, Zhou RQ. 2014. Effect of different halophilic microbial fermentation patterns on the volatile compound profiles and sensory properties of soy sauce moromi. Eur. Food Res. Technol. 239: 321-331. https://doi.org/10.1007/s00217-014-2225-9
  5. Roling W, Van Verseveld H. 1996. Characterization of Tetragenococcus halophila populations in indonesian soy mash (Kecap) fermentation. Appl. Environ. Microb. 62: 1203-1207.
  6. Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J. Agr. Food Chem. 59: 8401-8408. https://doi.org/10.1021/jf201953v
  7. Hahne H, Mäder U, Otto A, Bonn F, Steil L, Bremer E, et al. 2010. A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J. Bacteriol. 192: 870-882. https://doi.org/10.1128/JB.01106-09
  8. Kilstrup M, Jacobsen S, Hammer K, Vogensen FK. 1997. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microb. 63: 1826-1837.
  9. Beales N. 2004. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr. Rev. Food Sci. Food 3: 1-20. https://doi.org/10.1111/j.1541-4337.2004.tb00057.x
  10. Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276: 39586-39591. https://doi.org/10.1074/jbc.M103081200
  11. Jehlička J, Oren A, Vítek P. 2012. Use of Raman spectroscopy for identification of compatible solutes in halophilic bacteria. Extremophiles 16: 507-514. https://doi.org/10.1007/s00792-012-0450-3
  12. Slama I , Abdelly C , Bouchereau A, Flowers T , Savoure A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115: 433-447. https://doi.org/10.1093/aob/mcu239
  13. Shivanand P, Mugeraya G. 2011. Halophilic bacteria and their compatible solutes-osmoregulation and potential applications. Curr. Sci. 100: 1516-1521.
  14. Xu S, Zhou J, Liu L, Chen J. 2010. Proline enhances Torulopsis glabrata growth during hyperosmotic stress. Biotechnol. Bioproc. E. 15: 285-292. https://doi.org/10.1007/s12257-009-0131-y
  15. Tian X, Wang Y, Chu J, Zhuang Y, Zhang S. 2016. Enhanced l-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis. Appl. Microbiol. Biot. 100: 2301-2310. https://doi.org/10.1007/s00253-015-7136-6
  16. Morita Y, Nakamori S, Takagi H. 2002. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J. Biosci. Bioeng. 94: 390-394. https://doi.org/10.1016/S1389-1723(02)80214-6
  17. Sheehan VM, Sleator RD, Fitzgerald GF, Hill C. 2006. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl. Environ. Microb. 72: 2170-2177. https://doi.org/10.1128/AEM.72.3.2170-2177.2006
  18. Wu CD, Zhang J , Wang M, Du GC, Chen J. 2012. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biot. 39: 1031-1039. https://doi.org/10.1007/s10295-012-1104-2
  19. Zhang J , Wu CD, Du GC, Chen J. 2012. Enhanced a cid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol. Bioproc. E. 17: 283-289. https://doi.org/10.1007/s12257-011-0346-6
  20. Wu R, Song X, Liu Q, Ma D, Xu F, Wang Q, Tang X, Wu J. 2016. Gene expression of Lactobacillus plantarum FS5-5 in response to salt stress. Ann. Microbiol. 66: 1181-1188. https://doi.org/10.1007/s13213-016-1199-1
  21. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−${\Delta}{\Delta}$CT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  22. Brill J, Hoffmann T, Bleisteiner M, Bremer E. 2011. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. J. Bacteriol. 193: 5335-5346. https://doi.org/10.1128/JB.05490-11
  23. Tymczyszyn EE, Gómez A, Disalvo EA. 2005. Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus. Arch. Biochem. Biophys. 443: 66-73. https://doi.org/10.1016/j.abb.2005.09.004
  24. Guillot A, Obis D, Mistou MY. 2000. Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int. J. Food Microbiol. 55: 47-51. https://doi.org/10.1016/S0168-1605(00)00193-8
  25. Mykytczuk N, Trevors J , Leduc L , Ferroni G . 2007. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog. Biophys. Mol. Bio. 95: 60-82. https://doi.org/10.1016/j.pbiomolbio.2007.05.001
  26. Kempf B, Bremer E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170: 319-330. https://doi.org/10.1007/s002030050649
  27. Joghee NN, Jayaraman G. 2014. Metabolomic characterization of halophilic bacterial isolates reveals strains synthesizing rare diaminoacids under salt stress. Biochimie 102: 102-111. https://doi.org/10.1016/j.biochi.2014.02.015
  28. He Z, Zhou A, Baidoo E, He Q, Joachimiak MP, Benke P, et al. 2010. Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris Hildenborough to salt adaptation. Appl. Environ. Microb. 76: 1574-1586. https://doi.org/10.1128/AEM.02141-09
  29. Vrancken G, Rimaux T, Wouters D, Leroy F, De Vuyst L. 2009. The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt. Food Microbiol. 26: 720-727. https://doi.org/10.1016/j.fm.2009.07.006
  30. Kusvuran S, Dasgan HY, Abak K. 2013. Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. Scientific World J. 2013: 253414.
  31. Held C, Sadowski G. 2016. Compatible solutes: thermodynamic properties relevant for effective protection against osmotic stress. Fluid. Phase. Equilibr. 407: 224-235. https://doi.org/10.1016/j.fluid.2015.07.004
  32. Triadó X, Vila X, Galinski EA. 2011. Osmoadaptative accumulation of N$<{\varepsilon}$-acetyl-TEX>${\beta}$-lysine in green sulfur bacteria and Bacillus cereus CECT 148T. FEMS Microbiol. Lett. 318: 159-167. https://doi.org/10.1111/j.1574-6968.2011.02254.x
  33. Kets E, Galinski EA, De Wit M, De Bont J, Heipieper HJ. 1996. Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J. Bacteriol. 178: 6665-6670. https://doi.org/10.1128/jb.178.23.6665-6670.1996
  34. Sand M, Rodrigues M, Gonzalez JM, Crecy-Lagard V, Santos H , Muller V, et al. 2015. Mannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stress. Environ. Microbiol. 17: 711-719. https://doi.org/10.1111/1462-2920.12503
  35. Denslow SA, Walls AA, Daub ME. 2005. Regulation of biosynthetic genes and antioxidant properties of vitamin B6 vitamers during plant defense responses. Physiol. Mol. Plant P. 66: 244-255. https://doi.org/10.1016/j.pmpp.2005.09.004
  36. Danon A, Miersch O, Felix G, Camp RG, Apel K. 2 005. Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J. 41: 68-80.
  37. Pu X, An M, Han L, Zhang X. 2015. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotox. Environ. Safe 117: 96-106. https://doi.org/10.1016/j.ecoenv.2015.03.023
  38. Zhang G , Xu SC, Hu QZ, Mao W H, Gong YM. 2014. Putrescine plays a positive role in salt-tolerance mechanisms by reducing oxidative damage in roots of vegetable soybean. J. Integr. Agr. 13: 349-357. https://doi.org/10.1016/S2095-3119(13)60405-0
  39. Hirakawa H, Hayashi M, Yamaguchi A, Nishino K. 2010. Indole enhances acid resistance in Escherichia coli. Microb. Pathogenesi. 49: 90-94. https://doi.org/10.1016/j.micpath.2010.05.002
  40. Jayakannan M, Bose J, Babourina O , Rengel Z, Shabala S. 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 76: 25-40. https://doi.org/10.1007/s10725-015-0028-z
  41. Xie Z , Duan L, Tian X, Wang B, Eneji A E, Li Z. 2008. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. J. Plant Physiol. 165: 375-384. https://doi.org/10.1016/j.jplph.2007.06.001

Cited by

  1. Functional metabolomics approach reveals the reduced biosynthesis of fatty acids and TCA cycle is required for pectinase activity in Bacillus licheniformis vol.45, pp.11, 2017, https://doi.org/10.1007/s10295-018-2071-z
  2. Targeted Metabolomic Profiling Reveals Association Between Altered Amino Acids and Poor Functional Recovery After Stroke vol.10, pp.None, 2017, https://doi.org/10.3389/fneur.2019.01425
  3. Anhydrobiotic engineering for the endophyte bacterium Kosakonia radicincitans by osmoadaptation and providing exogenously hydroxyectoine vol.36, pp.1, 2017, https://doi.org/10.1007/s11274-019-2780-0
  4. Multi-omics characterization of the osmotic stress resistance and protease activities of the halophilic bacterium Pseudoalteromonas phenolica in response to salt stress vol.10, pp.40, 2020, https://doi.org/10.1039/d0ra04034g