참고문헌
- Haug A, Hostmark AT, Harstad OM. 2007. Bovine milk in human nutrition - a review. Lipids Health Dis. 6: 25. https://doi.org/10.1186/1476-511X-6-25
- Koletzko B, Aggett PJ, Bindels JG, Bung P, Ferre P, Gil A, et al. 1998. Growth, development and differentiation: a functional food science approach. Br. J. Nutr. 80 Suppl 1: S5-S45.
- Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y , et al. 2010. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 20: 1128-1137. https://doi.org/10.1038/cr.2010.80
- Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N. 2010. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem. Biophys. Res. Commun. 396: 528-533. https://doi.org/10.1016/j.bbrc.2010.04.135
- Schanzenbach CI, Kirchner B, Ulbrich SE, Pfaffl MW. 2017. Can milk cell or skim milk miRNAs be used as biomarkers for early pregnancy detection in cattle? PLoS One 12: e0172220. https://doi.org/10.1371/journal.pone.0172220
- Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S, Manca S, Wu D, et al. 2017. Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants. J. Nutr. 147: 3-10. https://doi.org/10.3945/jn.116.238949
- Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23: 4051-4060. https://doi.org/10.1038/sj.emboj.7600385
- Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
- Williams AE. 2008. Functional aspects of animal microRNAs. Cell. Mol. Life Sci. 65: 545-562. https://doi.org/10.1007/s00018-007-7355-9
- Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, et al. 2017. A critical evaluation of neuroprotective and neurodegenerative microRNAs in Alzheimer's disease. Biochem. Biophys. Res. Commun. 483: 1156-1165. https://doi.org/10.1016/j.bbrc.2016.08.067
- Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, et al. 2008. An analysis of human microRNA and disease associations. PLoS One 3: e3420. https://doi.org/10.1371/journal.pone.0003420
- Zempleni J, Baier SR, Howard KM, Cui J. 2015. Gene regulation by dietary microRNAs. Can. J. Physiol. Pharmacol. 93: 1097-1102. https://doi.org/10.1139/cjpp-2014-0392
- Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22: 107-126. https://doi.org/10.1038/cr.2011.158
- Oh S, Park MR, Son SJ, Kim Y. 2015. Comparison of total RNA isolation methods for analysis of immune-related microRNAs in market milks. Korean J. Food Sci. Anim. Resour. 35: 459-465. https://doi.org/10.5851/kosfa.2015.35.4.459
- Lee JY, Joung JY, Choi YS, Kim Y, Oh NS. 2016. Characterisation of microbial diversity and chemical properties of Cheddar cheese prepared from heat-treated milk. Int. Dairy J. 63: 92-98. https://doi.org/10.1016/j.idairyj.2016.07.016
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Schloss PD, Gevers D, Westcott SL. 2011. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6: e27310. https://doi.org/10.1371/journal.pone.0027310
- Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112-5120. https://doi.org/10.1128/AEM.01043-13
- Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, et al. 2015. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS One 10: e0124360. https://doi.org/10.1371/journal.pone.0124360
- Champagnea CP, Gagnonb D, St-Gelaisa D, Vuillemardb JC. 2009. Interactions between Lactococcus lactis and Streptococcus thermophilus strains in Cheddar cheese processing conditions. Int. Dairy J. 19: 669-674. https://doi.org/10.1016/j.idairyj.2009.06.002
- Schormuller J. 1968. The chemistry and biochemistry of cheese ripening. Adv. Food Res. 16: 231-334.
- Alsaweed M, Hepworth AR, Lefevre C, Hartmann PE, Geddes DT, Hassiotou F. 2015. Human milk microRNA and total RNA differ depending on milk fractionation. J. Cell. Biochem. 116: 2397-2407. https://doi.org/10.1002/jcb.25207
- Ruggirello M, Cocolin L, Dolci P. 2016. Fate of Lactococcus lactis starter cultures during late ripening in cheese models. Food Microbiol. 59: 112-118. https://doi.org/10.1016/j.fm.2016.05.001
- Kosaka N, Izumi H, Sekine K, Ochiya T. 2010. microRNA as a new immune-regulatory agent in breast milk. Silence 1: 7. https://doi.org/10.1186/1758-907X-1-7
- Pedersen I, David M. 2008. MicroRNAs in the immune response. Cytokine 43: 391-394. https://doi.org/10.1016/j.cyto.2008.07.016
- Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L. 2013. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell 4: 197-210. https://doi.org/10.1007/s13238-013-2119-9
- Bidarimath M, Khalaj K, Wessels JM, Tayade C. 2014. MicroRNAs, immune cells and pregnancy. Cell. Mol. Immunol. 11: 538-547. https://doi.org/10.1038/cmi.2014.45
- Sharma A, Kumar M, Aich J, Hariharan M, Brahmachari SK, Agrawal A, et al. 2009. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc. Natl. Acad. Sci. USA 106: 5761-5766. https://doi.org/10.1073/pnas.0808743106
- Vigorito E, Kohlhaas S, Lu D, Leyland R. 2013. miR-155: an ancient regulator of the immune system. Immunol. Rev. 253: 146-157. https://doi.org/10.1111/imr.12057
- Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al. 2012. Immune-related microRNAs are abundant in breast milk exosomes. Int. J. Biol. Sci. 8: 118-123. https://doi.org/10.7150/ijbs.8.118
- Gigli I, Maizon DO. 2013. microRNAs and the mammary gland: a new understanding of gene expression. Genet. Mol. Biol. 36: 465-474. https://doi.org/10.1590/S1415-47572013005000040
- Melnik BC, John SM, Schmitz G. 2014. Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J. Transl. Med. 12: 43. https://doi.org/10.1186/1479-5876-12-43
- Marshall K. 2004. Therapeutic applications of whey protein. Altern. Med. Rev. 9: 136-156.
- Parodi PW. 2007. A role for milk proteins and their peptides in cancer prevention. Curr. Pharm. Des. 13: 16. https://doi.org/10.2174/138161207779313786
- Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, et al. 2015. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J. Dairy Sci. 98: 2920-2933. https://doi.org/10.3168/jds.2014-9076
- Hirschi KD, Pruss GJ, Vance V. 2015. Dietary delivery: a new avenue for microRNA therapeutics? Trends Biotechnol. 33: 431-432. https://doi.org/10.1016/j.tibtech.2015.06.003
- Chiang K, Shu J, Zempleni J, Cui J. 2015. Dietary MicroRNA Database (DMD): An archive database and analytic tool for food-borne microRNAs. PLoS One 10: e0128089. https://doi.org/10.1371/journal.pone.0128089
- Ross SA, Davis CD. 2014. The emerging role of microRNAs and nutrition in modulating health and disease. Annu. Rev. Nutr. 34: 305-336. https://doi.org/10.1146/annurev-nutr-071813-105729
- Munch EM, Harris RA, Mohammad M, Benham AL, Pejerrey SM, Showalter L, et al. 2013. Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS One 8: e50564. https://doi.org/10.1371/journal.pone.0050564
- Howard KM, Jati Kusuma R, Baier SR, Friemel T, Markham L, Vanamala J, et al. 2015. Loss of miRNAs during processing and storage of cow's (Bos taurus) milk. J. Agric. Food Chem. 63: 588-592. https://doi.org/10.1021/jf505526w
- Leclercq-Perlat MN, Corrieu G, Spinnler HE. 2007. Controlled production of camembert-type cheeses: part III role of the ripening microflora on free fatty acid concentrations. J. Dairy Res. 74: 218-225. https://doi.org/10.1017/S0022029906002329
- Leclercq-Perlat MN, Buono F, Lambert D, Latrille E, Spinnler HE, Corrieu G. 2004. Controlled production of Camembert-type cheeses. Part I: microbiological and physicochemical evolutions. J. Dairy Res. 71: 346-354. https://doi.org/10.1017/S0022029904000196
- Beatty M, Guduric-Fuchs J, Brown E, Bridgett S, Chakravarthy U, Hogg RE, Simpson DA. 2014. Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics 15: 933. https://doi.org/10.1186/1471-2164-15-933
- Sjostrom AE, Sandblad L, Uhlin BE, Wai SN. 2015. Membrane vesicle-mediated release of bacterial RNA. Sci. Rep. 5: 15329. https://doi.org/10.1038/srep15329
- Ghosal A, Upadhyaya BB, Fritz JV, Heintz-Buschart A, Desai MS, Yusuf D, et al. 2015. The extracellular RNA complement of Escherichia coli. Microbiologyopen 4: 252-266. https://doi.org/10.1002/mbo3.235
피인용 문헌
- Determination of Microbial Diversity in Gouda Cheese via Pyrosequencing Analysis vol.36, pp.2, 2018, https://doi.org/10.22424/jmsb.2018.36.2.125