DOI QR코드

DOI QR Code

Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment

  • Kim, Ye-Ram (Department of Molecular and Life Science, Hanyang University) ;
  • Yang, Chul-Su (Department of Molecular and Life Science, Hanyang University)
  • Received : 2017.05.11
  • Accepted : 2017.06.26
  • Published : 2017.09.28

Abstract

Despite significant efforts to improve the treatment of tuberculosis (TB), it remains a prevalent infectious disease worldwide owing to the limitations of current TB therapeutic regimens. Recent work on novel TB treatment strategies has suggested that directly targeting host factors may be beneficial for TB treatment. Such strategies, termed host-directed therapeutics (HDTs), focus on host-pathogen interactions. HDTs may be more effective than the currently approved TB drugs, which are limited by the long durations of treatment needed and the emergence of drug-resistant strains. Targets of HDTs include host factors such as cytokines, immune checkpoints, immune cell functions, and essential enzyme activities. This review article discusses examples of potentially promising HDTs and introduces novel approaches for their development.

Keywords

References

  1. Zaman K. 2010. Tuberculosis: a global health problem. J. Health Popul. Nutr. 28: 111-113.
  2. World Health Organization. 2016. Global Tuberculosis Report 2016. WHO, Geneva, Switzerland.
  3. Schnippel K, Rosen S, Shearer K, Martinson N, Long L, Sanne I, et al. 2013. Costs of inpatient treatment for multidrug- resistant tuberculosis in South Africa. Trop. Med. Int. Health 18: 109-116. https://doi.org/10.1111/tmi.12018
  4. Arbex MA, Varella Mde C, Siqueira HR, Mello FA. 2010. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. Part 1: first-line drugs. J. Bras. Pneumol. 36: 626-640. https://doi.org/10.1590/S1806-37132010000500016
  5. Zumla A, Rao M, Parida SK, Keshavjee S, Cassell G, Wallis R, et al. 2015. Inflammation and tuberculosis: host-directed therapies. J. Intern. Med. 277: 373-387. https://doi.org/10.1111/joim.12256
  6. Hawn TR, Matheson AI, Maley SN, Vandal O. 2013. Hostdirected therapeutics for tuberculosis: can we harness the host? Microbiol. Mol. Biol. Rev. 77: 608-627. https://doi.org/10.1128/MMBR.00032-13
  7. Zumla A, Maeurer M, Host-Directed Therapies Network, Chakaya J, Hoelscher M, Ntoumi F, et al. 2015. Towards host-directed therapies for tuberculosis. Nat. Rev. Drug Discov. 14: 511-512. https://doi.org/10.1038/nrd4696
  8. World health Organization, Initiative ST. 2010. Treatment of Tuberculosis: Guidelines. WHO, Geneva, Switzerland.
  9. D'Ambrosio L, Centis R, Sotgiu G, Pontali E, Spanevello A, Migliori GB. 2015. New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Res. 1: 00010-2015.
  10. Timmins GS, Deretic V. 2006. Mechanisms of action of isoniazid. Mol. Microbiol. 62: 1220-1227. https://doi.org/10.1111/j.1365-2958.2006.05467.x
  11. Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE 3rd, et al. 2011. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333: 1630-1632. https://doi.org/10.1126/science.1208813
  12. Kim JJ, Lee HM, Shin DM, Kim W, Yuk JM, Jin HS, et al. 2012. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11: 457-468. https://doi.org/10.1016/j.chom.2012.03.008
  13. Zullo AJ, Lee S. 2012. Old antibiotics target TB with a new trick. Cell Host Microbe 11: 419-420. https://doi.org/10.1016/j.chom.2012.05.002
  14. Kolyva AS, Karakousis PC. 2012. Old and New TB Drugs: Mechanisms of Action and Resistance. INTECH Open Access Publisher, Croatia.
  15. Zumla A, Nahid P, Cole ST. 2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12: 388-404. https://doi.org/10.1038/nrd4001
  16. Rattan A, Kalia A, Ahmad N. 1998. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg. Infect. Dis. 4: 195. https://doi.org/10.3201/eid0402.980207
  17. Lange C, Abubakar I, Alffenaar JW, Bothamley G, Caminero JA, Carvalho AC, et al. 2014. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. Eur. Respir. J. 44: 23-63. https://doi.org/10.1183/09031936.00188313
  18. World health Organization. 2011. Guidelin es for the Programmatic Management of Drug-resistant Tuberculosis - 2011 Update. WHO, Geneva, Switzerland.
  19. Sharma D, Cukras AR, Rogers EJ, Southworth DR, Green R. 2007. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J. Mol. Biol. 374: 1065-1076. https://doi.org/10.1016/j.jmb.2007.10.003
  20. Crofton J, Mitchison D. 1948. Streptomycin resistance in pulmonary tuberculosis. Br. Med. J. 2: 1009. https://doi.org/10.1136/bmj.2.4588.1009
  21. Rich M. 2003. The PIH Guide to the Medical Management of Multidrug-resistant Tuberculosis. International Ed., Partners in Health, Boston, MA.
  22. Salian S, Matt T, Akbergenov R, Harish S, Meyer M, Duscha S, et al. 2012. Structure-activity relationships among the kanamycin aminoglycosides: role of ring I hydroxyl and amino groups. Antimicrob. Agents Chemother. 56: 6104-6108. https://doi.org/10.1128/AAC.01326-12
  23. Arbex MA, Varella Mde C, Siqueira HR, Mello FA. 2010. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. Part 2: second line drugs. J. Bras. Pneumol. 36: 641-656. https://doi.org/10.1590/S1806-37132010000500017
  24. Aubry A, Pan XS, Fisher LM, Jarlier V, Cambau E. 2004. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob. Agents Chemother. 48: 1281-1288. https://doi.org/10.1128/AAC.48.4.1281-1288.2004
  25. Wade MM, Zhang Y. 2004. Mechanisms of drug resistance in Mycobacterium tuberculosis. Front. Biosci. 9: 975-994. https://doi.org/10.2741/1289
  26. Das KM, Eastwood MA, McManus JP, Sircus W. 1973. Adverse reactions during salicylazosulfapyridine therapy and the relation with drug metabolism and acetylator phenotype. N. Engl. J. Med. 289: 491-495. https://doi.org/10.1056/NEJM197309062891001
  27. Caceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V, Barletta RG. 1997. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol. 179: 5046-5055. https://doi.org/10.1128/jb.179.16.5046-5055.1997
  28. Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brennan PJ, et al. 2000. Activation of the pro-drug ethionamide is regulated in mycobacteria. J. Biol. Chem. 275: 28326-28331.
  29. Carette X, Blondiaux N, Willery E, Hoos S, Lecat-Guillet N, Lens Z, et al. 2012. Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands. Nucleic Acids Res. 40: 3018-3030. https://doi.org/10.1093/nar/gkr1113
  30. Bouza E, Munoz P. 2001. Linezolid: pharmacokinetic characteristics and clinical studies. Clin. Microbiol. Infect. 7 Suppl 4: 75-82.
  31. Tato M, de la Pedrosa EG, Canton R, Gomez-Garcia I, Fortun J, Martin-Davila P, et al. 2006. In vitro activity of linezolid against Mycobacterium tuberculosis complex, including multidrug-resistant Mycobacterium bovis isolates. Int. J. Antimicrob. Agents 28: 75-78. https://doi.org/10.1016/j.ijantimicag.2006.02.011
  32. Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, et al. 2012. Linezolid for treatment of chronic extensively drugresistant tuberculosis. N. Engl. J. Med. 367: 1508-1518. https://doi.org/10.1056/NEJMoa1201964
  33. Watkins RR, Lemonovich TL, File TM Jr. 2012. An evidencebased review of linezolid for the treatment of methicillinresistant Staphylococcus aureus (MRSA): place in therapy. Core Evid. 7: 131-143.
  34. Zumla A, Rao M, Dodoo E, Maeurer M. 2016. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med. 14: 89. https://doi.org/10.1186/s12916-016-0635-1
  35. Bento CF, Empadinhas N, Mendes V. 2015. Autophagy in the fight against tuberculosis. DNA Cell Biol. 34: 228-242. https://doi.org/10.1089/dna.2014.2745
  36. Hur KY, Lee MS. 2015. New mechanisms of metformin action: focusing on mitochondria and the gut. J. Diabetes Investig. 6: 600-609. https://doi.org/10.1111/jdi.12328
  37. Yang CS, Kim JJ, Lee HM, Jin HS, Lee SH, Park JH, et al. 2014. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy 10: 785-802. https://doi.org/10.4161/auto.28072
  38. Singhal A, Jie L, Kumar P, Hong GS, Leow MK, Paleja B, et al. 2014. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med. 6: 263ra159. https://doi.org/10.1126/scitranslmed.3009885
  39. Napier RJ, Rafi W, Cheruvu M, Powell KR, Zaunbrecher MA, Bornmann W, et al. 2011. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10: 475-485. https://doi.org/10.1016/j.chom.2011.09.010
  40. Bruns H, Stegelmann F, Fabri M, Dohner K, van Zandbergen G, Wagner M, et al. 2012. Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. J. Immunol. 189: 4069-4078. https://doi.org/10.4049/jimmunol.1201538
  41. Vilaplana C, Marzo E, Tapia G, Diaz J, Garcia V, Cardona PJ. 2013. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J. Infect. Dis. 208: 199-202. https://doi.org/10.1093/infdis/jit152
  42. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511: 99-103. https://doi.org/10.1038/nature13489
  43. Chun RF, Adams JS, Hewison M. 2011. Immunomodulation by vitamin D: implications for TB. Expert Rev. Clin. Pharmacol. 4: 583-591. https://doi.org/10.1586/ecp.11.41
  44. Mily A, Rekha RS, Kamal SM, Arifuzzaman AS, Rahim Z, Khan L, et al. 2015. Significant effects of oral phenylbutyrate and vitamin D3 adjunctive therapy in pulmonary tuberculosis: a randomized controlled trial. PLoS One 10: e0138340. https://doi.org/10.1371/journal.pone.0138340
  45. Singh A, Mohan A, Dey AB, Mitra DK. 2013. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon gamma-producing T cells from apoptosis in patients with pulmonary tuberculosis. J. Infect. Dis. 208: 603-615. https://doi.org/10.1093/infdis/jit206
  46. Grosso JF, Jure-Kunkel MN. 2013. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13: 5.
  47. Rivero-Lezcano OM. 2008. Cytokines as immunomodulators in tuberculosis therapy. Recent Pat. Antiinfect. Drug Discov. 3: 168-176. https://doi.org/10.2174/157489108786242332
  48. Ottenhoff TH, Verreck FA, Hoeve MA, van de Vosse E. 2005. Control of human host immunity to mycobacteria. Tuberculosis 85: 53-64. https://doi.org/10.1016/j.tube.2004.09.011
  49. Denis M, Ghadirian E. 1990. Granulocyte-macrophage colonystimulating factor restricts growth of tubercle bacilli in human macrophages. Immunol. Lett. 24: 203-206. https://doi.org/10.1016/0165-2478(90)90049-V
  50. Chroneos ZC, Jagannath C. 2012. Immunoregulatory Role of GM-CSF in Pulmonary Tuberculosis. INTECH Open Access Publisher, Croatia.
  51. Nelson BH. 2004. IL-2, regulatory T cells, and tolerance. J. Immunol. 172: 3983-3988. https://doi.org/10.4049/jimmunol.172.7.3983
  52. Johnson BJ, Ress SR, Willcox P, Pati BP, Lorgat F, Stead P, et al. 1995. Clinical and immune responses of tuberculosis patients treated with low-dose IL-2 and multidrug therapy. Cytokines Mol. Ther. 1: 185-196.
  53. Johnson BJ, Bekker LG, Rickman R, Brown S, Lesser M, Ress S, et al. 1997. rhuIL-2 adjunctive therapy in multidrug resistant tuberculosis: a comparison of two treatment regimens and placebo. Tuber. Lung Dis. 78: 195-203. https://doi.org/10.1016/S0962-8479(97)90026-5
  54. Wallis RS, van Vuuren C, Potgieter S. 2009. Adalimumab treatment of life-threatening tuberculosis. Clin. Infect. Dis. 48: 1429-1432. https://doi.org/10.1086/598504
  55. Rossi JF, Lu ZY, Jourdan M, Klein B. 2015. Interleukin-6 as a therapeutic target. Clin. Cancer Res. 21: 1248-1257. https://doi.org/10.1158/1078-0432.CCR-14-2291
  56. Okada M, Kita Y, Kanamaru N, Hashimoto S, Uchiyama Y, Mihara M, et al. 2011. Anti-IL-6 receptor antibody causes less promotion of tuberculosis infection than anti-TNF-alpha antibody in mice. Clin. Dev. Immunol. 2011: 404929.
  57. Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, et al. 2015. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc. Natl. Acad. Sci. USA 112: 1827-1832. https://doi.org/10.1073/pnas.1424563112
  58. Zumla A, Rao M, Wallis RS, Kaufmann SH, Rustomjee R, Mwaba P, et al. 2016. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis. 16: e47-e63. https://doi.org/10.1016/S1473-3099(16)00078-5
  59. Podder B, Jang WS, Nam KW, Lee BE, Song HY. 2015. Ursolic acid activates intracellular killing effect of macrophages during Mycobacterium tuberculosis infection. J. Microbiol. Biotechnol. 25: 738-744. https://doi.org/10.4014/jmb.1407.07020
  60. Flores-Villalva S, Rogriguez-Hernandez E, Rubio-Venegas Y, Canto-Alarcon JG, Milian-Suazo F. 2015. What can proteomics tell us about tuberculosis? J. Microbiol. Biotechnol. 25: 1181-1194. https://doi.org/10.4014/jmb.1502.02008
  61. Tiwari B, Soory A, Raghunand TR. 2014. An immunomodulatory role for the Mycobacterium tuberculosis region of difference 1 locus proteins PE35 (Rv3872) and PPE68 (Rv3873). FEBS J. 281: 1556-1570. https://doi.org/10.1111/febs.12723
  62. Yang CS, Yuk JM, Lee YH, Jo EK. 2015. Toxoplasma gondii GRA7-induced TRAF6 activation contributes to host protective immunity. Infect. Immun. 84: 339-350.
  63. Koh HJ, Kim YR, Kim JS, Yun JS, Jang K, Yang CS. 2017. Toxoplasma gondii GRA7-targeted ASC and PLD1 promote antibacterial host defense via PKCalpha. PLoS Pathog. 13: e1006126. https://doi.org/10.1371/journal.ppat.1006126
  64. Pedral-Sampaio DB, Netto EM, Brites C, Bandeira AC, Guerra C, Barberin MG, et al. 2003. Use of Rhu-GM-CSF in pulmonary tuberculosis patients: results of a randomized clinical trial. Braz. J. Infect. Dis. 7: 245-252.
  65. Wallis RS. 2005. Reconsidering adjuvant immunotherapy for tuberculosis. Clin. Infect. Dis. 41: 201-208. https://doi.org/10.1086/430914
  66. Phillips BL, Mehra S, Ahsan MH, Selman M, Khader SA, Kaushal D. 2015. LAG3 expression in active Mycobacterium tuberculosis infections. Am. J. Pathol. 185: 820-833. https://doi.org/10.1016/j.ajpath.2014.11.003
  67. Postow MA, Callahan MK, Wolchok JD. 2015. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33: 1974-1982. https://doi.org/10.1200/JCO.2014.59.4358
  68. Parida SK, Madansein R, Singh N, Padayatchi N, Master I, Naidu K, et al. 2015. Cellular therapy in tuberculosis. Int. J. Infect. Dis. 32: 32-38. https://doi.org/10.1016/j.ijid.2015.01.016

Cited by

  1. Smear grading and the Mantoux skin test can be used to predict sputum smear conversion in patients suffering from tuberculosis vol.12, pp.None, 2017, https://doi.org/10.3205/dgkh000297
  2. The Deconstructed Granuloma: A Complex High-Throughput Drug Screening Platform for the Discovery of Host-Directed Therapeutics Against Tuberculosis vol.8, pp.None, 2018, https://doi.org/10.3389/fcimb.2018.00275
  3. Bacterial Persisters and Infection: Past, Present, and Progressing vol.73, pp.1, 2017, https://doi.org/10.1146/annurev-micro-020518-115650
  4. Efficient computational model for identification of antitubercular peptides by integrating amino acid patterns and properties vol.593, pp.21, 2017, https://doi.org/10.1002/1873-3468.13536
  5. A negative covariation between toxoplasmosis and CoVID-19 with alternative interpretations vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-69351-x
  6. The Manipulation of the Lipid Mediator Metabolism as Adjunct Host-Directed Therapy in Tuberculosis vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.623941
  7. The protected physiological state of intracellular Salmonella enterica persisters reduces host cell-imposed stress vol.4, pp.1, 2017, https://doi.org/10.1038/s42003-021-02049-6