DOI QR코드

DOI QR Code

Protein-protein Interaction Analysis of Glucagon-like Peptide-2 Receptor with Its Native Ligand Glucagon-like Peptide-2

  • Received : 2017.07.31
  • Accepted : 2017.09.25
  • Published : 2017.09.30

Abstract

Glucagon like pepide-2, one of the GLPs, is involved in various metabolic functions in the gastrointestinal tract. It plays a major role in the regulation of mucosal epithelium and the intestinal crypt cell proliferation. Because of their therapeutic importance towards the diseases in the gastrointestinal tract, it becomes necessary to study their interaction with its receptor, GLP-2R. In this study, we have developed protein-protein docking complexes of GLP-2 - GLP-2 receptor. Homology models of GLP-2 are developed, and a reliable model out of the predicted models was selected after model validation. The model was bound with the receptor, to study the important interactions of the complex. This study could be useful in developing novel and potent drugs for the diseases related with GLP-2.

Keywords

References

  1. T. J. Kiefer and J. F. Habener, "The glucagon-like peptides", Endocrine Reviews, Vol. 20, pp. 876-913, 1999. https://doi.org/10.1210/edrv.20.6.0385
  2. J. L. Estall and D. J. Drucker, "Glucagon and glucagon-like peptide receptors as drug targets", Curr. Pharm. Des., Vol. 12, pp. 1731-1750, 2006. https://doi.org/10.2174/138161206776873671
  3. D. J. Drucker, "Glucagon-like peptides", Diabetes, Vol. 47, pp. 159-169, 1998. https://doi.org/10.2337/diab.47.2.159
  4. P. J. Hornby and B. A. Moore, "The therapeutic potential of targeting the glucagon-like peptide-2 receptor in gastrointestinal disease", Expert Opin. Ther. Targets, Vol. 15, pp. 637-646, 2011. https://doi.org/10.1517/14728222.2011.556620
  5. B. Yusta, R. P. Boushey, and D. J. Drucker, "The Glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway", J. Biol. Chem., Vol. 275, pp. 35345-35352, 2000. https://doi.org/10.1074/jbc.M005510200
  6. D. J. Drucker, P. Erlich, S. L. Asa, and P. L. Brubaker, "Induction of intestinal epithelial proliferation by glucagon-like peptide 2", Proc. Nati. Acad. Sci. U. S. A., Vol. 93, pp. 7911-7916, 1996 https://doi.org/10.1073/pnas.93.15.7911
  7. S. Schlyer and R. Horuk, "I want a new drug: Gprotein-coupled receptors in drug development", Drug Discov. Today, Vol. 11, pp. 481-493, 2006. https://doi.org/10.1016/j.drudis.2006.04.008
  8. G. C. Baker, J. J. Smith, and D. A. Cowan, "Review and re-analysis of domain-specific 16S primers", J. Microbiol. Methods, Vol. 55, pp. 541-555, 2003. https://doi.org/10.1016/j.mimet.2003.08.009
  9. D. Xu and Y. Zhang, "Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field", Proteins, Vol. 80, pp. 1715-1735, 2012.
  10. Y. Shen, J. Maupetit, P. Derreumaux, and P. Tuffery, "Improved PEP-FOLD approach for peptide and miniprotein structure prediction", J. Chem. Theory Comput., Vol. 10 pp. 4745-4758, 2014. https://doi.org/10.1021/ct500592m
  11. S. C. Lovell, I. W. Davis, W. B. Arendall III, P. I. W. de Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson, "Structure validation by $C{\alpha}$ geometry: ${\phi}$,${\psi}$ and $C{\beta}$ deviation", Proteins, Vol. 50, pp. 437-450, 2002.
  12. C. Colovos and T. O. Yeates, "Verification of protein structures: patterns of nonbonded atomic interactions", Protein Sci., Vol. 2, pp. 1511-1519, 1993. https://doi.org/10.1002/pro.5560020916
  13. G. Studer, M. Biasini, and T. Schwede, "Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane)", Bioinformatics, Vol. 30 pp. i505-i511, 2014. https://doi.org/10.1093/bioinformatics/btu457
  14. S. Comeau, D. W. Gatchell, S. Vajda, and C. J. Camacho, "ClusPro: an automated docking and discrimination method for the prediction of protein complexes", Bioinformatics, Vol. 20, pp. 45-50, 2004. https://doi.org/10.1093/bioinformatics/btg371
  15. S. R. Comeau, D. W. Gatchell, S. Vajda, C. J. Camacho, "ClusPro: a fully automated algorithm for proteinprotein docking", Nucleic Acids Res., Vol. 32, pp. 96-99, 2004.
  16. D. Kozakov, D. Beglov, T. Bohnuud, S. E. Mottarella, B. Xia, D. R. Hall, and S. Vajda, "How good is automated protein docking?", Proteins, Vol. 81, pp. 2159-2166, 2013. https://doi.org/10.1002/prot.24403
  17. M. F. Lensink and S. Wodak, "Docking, scoring, and affinity prediction in CAPRI", Proteins, Vol. 81, pp. 2082-2095, 2013. https://doi.org/10.1002/prot.24428
  18. D. Kozakov, R. Brenke, S. R. Comeau, and S. Vajda, "PIPER: An FFT-based protein docking program with pairwise potentials", Proteins, Vol. 65, pp. 392-406, 2006. https://doi.org/10.1002/prot.21117