DOI QR코드

DOI QR Code

Cloning a Mannanase 26AT Gene from Paenibacillus woosongensis and Characterization of the Gene Product

Paenibacillus woosongensis으로부터 Mannanase 26AT 유전자의 클로닝과 유전자 산물의 분석

  • Yoon, Ki-Hong (Food Science & Biotechnology Major, Woosong University)
  • 윤기홍 (우송대학교 바이오식품과학전공)
  • Received : 2017.05.15
  • Accepted : 2017.09.05
  • Published : 2017.09.30

Abstract

An open reading frame coding for mannanase predicted from the partial genomic sequence of Paenibacillus woosongensis was cloned into Escherichia coli by polymerase chain reaction amplification, and completely sequenced. This mannanase gene, designated man26AT, consisted of 3,162 nucleotides encoding a polypeptide of 1,053 amino acid residues. Based on the deduced amino acid sequence, Man26AT was identified as a modular enzyme, which included a catalytic domain belonging to the glycosyl hydrolase family 26 and two carbohydrate-binding modules, CBM27 and CBM11. The amino acid sequence of Man26AT was homologous to that of several putative mannanases, with identity of 81% for P. ihumii and identity of less than 57% for other strains of Paenibacillus. A cell-free extract of recombinant E. coli carrying the man26AT gene showed maximal mannanase activity at $55^{\circ}C$ and pH 5.5. The enzyme retained above 80% of maximal activity after preincubation for 1 h at $50^{\circ}C$. Man26AT was comparably active on locust bean gum (LBG), galactomanan, and kojac glucomannan, whereas it did not exhibit activity on carboxymethylcellulose, xylan, or para-nitrophenyl-${\beta}$-mannopyranoside. The common end products liberated from mannooligosaccharides, including mannotriose, mannotetraose, mannopentaose, and mannohexaose, or LBG by Man26AT were mannose, mannobiose, and mannotriose. Mannooligosacchrides larger than mannotriose were found in enzymatic hydrolyzates of LBG and guar gum, respectively. However, Man26AT was unable to hydrolyze mannobiose. Man26AT was intracellularly degraded into at least three active proteins with different molecular masses by zymogram.

Paenibacillus woosongensis의 유전체 부분 염기서열로부터 mannanase를 코드하는 것으로 유추되는 open reading frame을 중합효소연쇄반응으로 증폭하여 대장균에 클로닝하고 염기서열을 결정하였다. Mannanase 유전자는 man26AT로 명명하였으며 1,053 아미노산으로 구성된 단백질을 코드하는 3,159 뉴클레오티드로 이루어졌다. 아미노산 잔기배열을 분석한 결과 Man26AT는 glycosyl hydrolase family 26의 mannanase와 상동성이 높은 활성영역, 탄수화물 결합영역 CBM27과 CBM11로 구성되어 있었다. Man26AT의 아미노산 배열은 P. ihumii의 유추된 mannanase와 상동성이 81%이고 다른 Paenibacillus 속 균주의 여러 mannanases와 57% 이하의 상동성을 보였다. man26AT 유전자를 함유한 재조합 대장균의 균체 파쇄상등액은 $55^{\circ}C$와 pH 5.5에서 최대의 mannanase 활성을 보였고, $50^{\circ}C$에서 1시간 열처리한 후에 80% 이상의 잔존활성을 보였다. Man26AT는 locust bean gum (LBG) galactomannan과 konjac glucomannan에 대한 분해활성이 유사하였으며, carboxymethylcellulose, xylan과 para-nitrophenyl-${\beta}$-mannopyranoside는 분해하지 못하였다. Man26AT에 의해 mannotriose, mannotetraose, mannopentaose와 mannohexaose 등의 만노올리고당이나 LBG로부터 공통의 최종 가수분해 산물로 mannose, mannobiose와 mannotriose가 생성되었다. 또한 mannotriose 보다 큰 만노올리고당이 LBG와 guar gum의 분해산물로 각각 생성되었다. 그러나 Man26AT는 mannobiose를 분해하지는 못하였다. 활성염색을 통해 Man26AT는 균체 내에서 3개 이상의 크기가 다른 활성 단백질로 분해된 것이 확인되었다.

Keywords

References

  1. Bai, X., Hu, H., Chen, H., Wei, Q., Yang, Z. and Huang, Q. 2014. Expression of a ${\beta}$-mannosidase from Paenibacillus polymyxa A-8 in Escherichia coli and characterization of the recombinant enzyme. PLoS One 9, e111622. doi: 10.1371/journal.pone.0111622.
  2. Beguin, P., Cornet, P. and Millet, J. 1983. Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie 65, 495-500. https://doi.org/10.1016/S0300-9084(83)80131-X
  3. Cho, K. M., Hong, S. Y., Lee, S. M., Kim, Y. H., Kahng, G. G., Kim, H. and Yun, H. D. 2006. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl. Microbiol. Biotechnol. 73, 618-630. https://doi.org/10.1007/s00253-006-0523-2
  4. Cho, K. M., Math, R. K., Hong, S. Y., Asraful Islam, S. M., Kim, J. O., Hong, S. J., Kim, H. and Yun, H. D. 2008. Changes in the activity of the multifunctional ${\beta}$-glycosyl hydrolase (Cel44C-Man26A) from Paenibacillus polymyxa by removal of the C-terminal region to minimum size. Biotechnol. Lett. 30, 1061-1068. https://doi.org/10.1007/s10529-008-9640-6
  5. Dhawan, S., Singh, R., Kaur, R. and Kaur, J. 2016. A ${\beta}$-mannanase from Paenibacillus sp.: Optimization of production and its possible prebiotic potential. Biotechnol. Appl. Biochem. 63, 669-678. https://doi.org/10.1002/bab.1419
  6. Fu, X., Huang, X., Liu, P., Lin, L., Wu, G., Li, C., Feng, C. and Hong, Y. 2010. Cloning and characterization of a novel mannanase from Paenibacillus sp. BME-14. J. Microbiol. Biotechnol. 20, 518-524.
  7. Grady, E. N., MacDonald, J., Liu, L., Richman, A. and Yuan, Z. C. 2016. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Fact. 15, 203. https://doi.org/10.1186/s12934-016-0603-7
  8. Hatada, Y., Takeda, N., Hirasawa, K., Ohta, Y., Usami, R., Yoshida, Y., Grant, W. D., Ito, S. and Horikoshi, K. 2005. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9, 497-500. https://doi.org/10.1007/s00792-005-0460-5
  9. Kim, D. Y., Chung, C. W., Cho, H. Y., Rhee, Y. H., Shin, D. H., Son, K. H. and Park, H. Y. 2017. Biocatalytic characterization of an endo-${\beta}$-1,4-mannanase produced by Paenibacillus sp. strain HY-8. Biotechnol. Lett. 39, 149-155. https://doi.org/10.1007/s10529-016-2228-7
  10. Lee, J. C. and Yoon, K. H. 2008. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 58, 612-616. https://doi.org/10.1099/ijs.0.65350-0
  11. Lee, S. H. and Lee, Y. E. 2014. Cloning and characterization of a multidomain GH10 xylanase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24, 1525-1535. https://doi.org/10.4014/jmb.1407.07077
  12. Pason, P., Kyu, K. L. and Ratanakhanokchai, K. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72, 2483-2490. https://doi.org/10.1128/AEM.72.4.2483-2490.2006
  13. Sermsathanaswadi, J., Baramee, S., Tachaapaikoon, C., Pason, P., Ratanakhanokchai, K. and Kosugi, A. 2016. The family 22 carbohydrate-binding module of bifunctional xylanase/ ${\beta}$-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Enzyme Microb. Technol. 96, 75-84.
  14. Shimizu, M., Kaneko, Y., Ishihara, S., Mochizuki, M., Sakai, K., Yamada, M., Murata, S., Itoh, E., Yamamoto, T., Sugimura, Y., Hirano, T., Takaya, N., Kobayashi, T. and Kato, M. 2015. Novel ${\beta}$-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J. Biol. Chem. 290, 27914-27. https://doi.org/10.1074/jbc.M115.661645
  15. Srivastava, P. K. and Kapoor, M. 2017. Production, properties, and applications of endo-${\beta}$-mannanases. Biotechnol. Adv. 35, 1-19. https://doi.org/10.1016/j.biotechadv.2016.11.001
  16. Takeda, N., Hirasawa, K., Uchimura, K., Nogi, Y., Hatada, Y., Usami, R., Yoshida, Y., Grant, W. D., Ito, S. and Horikoshi, K. 2004. Purification and enzymatic properties of a highly alkaline mannanase from alkaliphilic Bacillus sp. strain JAMB-750. J. Biol. Macromol. 4, 67-74.
  17. Taylor, K. A., Crosby, B., McGavin, M., Forsberg, C. W. and Thomas, D. Y. 1987. Characteristics of the endoglucanase encoded by a cel gene from Bacteroides succinogenes expressed in Escherichia coli. Appl. Environ. Microbiol. 53, 41-46.
  18. Xia, W., Lu, H., Xia, M., Cui, Y., Bai, Y., Qian, L., Shi, P., Luo, H. and Yao, B. 2016. A novel glycoside hydrolase family 113 endo-${\beta}$-1,4-mannanase from Alicyclobacillus sp. strain A4 and insight into the substrate recognition and catalytic mechanism of this family. Appl. Environ. Microbiol. 82, 2718-2727. https://doi.org/10.1128/AEM.04071-15
  19. Xu, M., Zhang, R., Liu, X., Shi, J., Xu, Z. and Rao, Z. 2013. Improving the acidic stability of a ${\beta}$-mannanase from Bacillus subtilis by site-directed mutagenesis. Proc. Biochem. 48, 1166-1173. https://doi.org/10.1016/j.procbio.2013.06.014
  20. Yamabhai, M., Sak-Ubol, S., Srila, W. and Haltrich, D. 2016. Mannan biotechnology: from biofuels to health. Crit. Rev. Biotechnol. 36, 32-42. https://doi.org/10.3109/07388551.2014.923372
  21. Yin, L. J., Tai, H. M. and Jiang, S. T. 2012. Characterization of mannanase from a novel mannanase-producing bacterium. J. Agric. Food Chem. 60, 6425-6431. https://doi.org/10.1021/jf301944e
  22. Yoon, K. H. 2010. Mannanolytic enzyme activity of Paenibacillus woosongensis. Kor. J. Microbiol. 46, 397-400.
  23. Yoon, K. H., Chung, S. and Lim, B. L. 2008. Characterization of the Bacillus subtilis W-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46, 344-349. https://doi.org/10.1007/s12275-008-0045-y
  24. Zhang, J. X., Chen, Z. T., Meng, X. L., Mu, G. Y., Hu, W. B., Zhao, J. and Nie, G. X. 2016. Gene cloning, expression, and characterization of a novel ${\beta}$-mannanase from the endophyte Paenibacillus sp. CH-3. Biotechnol. Appl. Biochem. 64, 471-481.
  25. Zhou, Y., Lee, Y. S., Park, I. H., Sun, Z. X., Yang, T. X., Yang, P., Choi, Y. R. and Sun, M. 2012. Cyclodextrin glycosyltransferase encoded by a gene of Paenibacillus azotofixans YUPP-5 exhibited a new function to hydrolyze polysaccharides with ${\beta}$-1,4 linkage. Enzyme Microb. Technol. 50, 151-157. https://doi.org/10.1016/j.enzmictec.2011.12.001