Protective Effects of Pyrrosiae Folium on the 2% Glucose-Induced Toxicity in Caenorhabditis elegans

석위가 예쁜꼬마선충에서 Glucose로 유도된 독성에 미치는 영향

  • 김봉석 (우석대학교 약학대학) ;
  • 이병주 (우석대학교 약학대학) ;
  • 이현주 (우석대학교 약학대학) ;
  • 안순영 (우석대학교 약학대학) ;
  • 박지원 (우석대학교 약학대학) ;
  • 윤선화 (우석대학교 약학대학) ;
  • 오미진 (한국식품연구원) ;
  • 권진 (한국복지대학 의료보장구과) ;
  • 이세연 (우석대학교 약학대학) ;
  • 차동석 (우석대학교 약학대학) ;
  • 오찬호 (우석대학교 식품생명공학과) ;
  • 전훈 (우석대학교 약학대학)
  • Received : 2017.08.08
  • Accepted : 2017.09.11
  • Published : 2017.09.30

Abstract

Pyrrosia lingua which belongs to Polypodiaceae has been used as a traditional medicine for the treatment of urinary system inflammation, urination disorder, and bronchitis. However, there are not enough phytochemical and pharmacological studies of P. lingua up to now. Here in this study, the protective effect of MeOH extract of whole plant of Pyrrosia lingua (MPL) against 2% glucose-induced toxicity was investigated using Caenorhabditis elegans (C. elegans) model system. We found that MPL significantly extended the lifespan of wild-type nematode under normal culture condition. MPL also effectively recovered the decreased lifespan caused by 2% glucose-toxicity. In addition, MPL efficiently attenuated the increased glucose concentration inside of nematode. Further studies evaluating diabetes-related factors revealed that MPL reduced both intracellular ROS and lipid accumulation which were up-regulated under 2% glucose supplement condition. Our data also showed that MPL improved the 2% glucose-induced shortened body movement of nematode. Lastly, we carried out genetic studies using several single gene knockout mutants to establish the possible target of MPL. Our results demonstrated that genes such as daf-2 and daf-16 were responsible for the protective activity of MPL against 2% glucose-induced toxicity. These results indicate that MPL exerts protective action against 2% glucose via regulation of insulin/IGF-1 sinaling pathway and FOXO activation.

Keywords

References

  1. Canivell, S. and Gomis, R. (2014) Diagnosis and classification of autoimmune diabetes mellitus. Autoimmunity Reviews 13: 403-407. https://doi.org/10.1016/j.autrev.2014.01.020
  2. Gavin III, J. R., Alberti, K., Davidson, M. B. and DeFronzo, R. A. (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20: 1183. https://doi.org/10.2337/diacare.20.7.1183
  3. Chiang, J. L., Kirkman, M. S., Laffel, L. M., Peters, A. L. and Type 1 Diabetes Sourcebook Authors. (2014) Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 37: 2034-2054. https://doi.org/10.2337/dc14-1140
  4. Asano, N., Yamashita, T., Yasuda, K., Ikeda, K., Kizu, H., Kameda, Y., Kato, A., Nash, R. J., Lee, H. S. and Ryu, K. S. (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 49: 4208-4213. https://doi.org/10.1021/jf010567e
  5. Do, J. C., Jung, K. Y. and Son, K. H. (1992) Notes; Flavonoid Glycosides from the Fronds of Pyrrosia lingua. Kor. J. Pharmacogn. 23: 276-279.
  6. Yamashita, H., Masuda, K., Kobayashi, T., Ageta, H. and Shiojima, K. (1998) Dammarane triterpenoids from rhizomes of Pyrrosia lingua. Phytochemistry 49: 2461-2466. https://doi.org/10.1016/S0031-9422(98)00303-3
  7. Lim, H., Kwon, J. and Jeon, H. (2014) Pyrrosia lingua Reduces Nociception in Mouse. Kor. J. Pharmacogn. 20: 285-289.
  8. Kim, M., Park, J. and Lim, S. (2010) Antioxidant activity and cell toxicity of pressurised liquid extracts from 20 selected plant species in Jeju, Korea. Food Chem. 122: 546-552. https://doi.org/10.1016/j.foodchem.2010.03.007
  9. Cho, S., Yoo, W., Ahn, S. and Kim, N. (2007) The formation of Sogal concept and classification in Korean Traditional Medicine. Korean J. Orient Med. 13: 1-14.
  10. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  11. Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. 92: 7540-7544. https://doi.org/10.1073/pnas.92.16.7540
  12. Rezania, A., Bruin, J. E., Xu, J., Narayan, K., Fox, J. K., O'Neil, J. J. and Kieffer, T. J. (2013) Enrichment of human embryonic stem cell?derived NKX6. 1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31: 2432-2442. https://doi.org/10.1002/stem.1489
  13. Lee, S. J., Murphy, C. T. and Kenyon, C. (2009) Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 10: 379-391. https://doi.org/10.1016/j.cmet.2009.10.003
  14. Ha, H., Hwang, I., Park, J. H. and Lee, H. B. (2008) Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res. Clin. Pract. 82: S42-S45. https://doi.org/10.1016/j.diabres.2008.09.017
  15. Morcos, M., Du, X., Pfisterer, F., Hutter, H., Sayed, A. A., Thornalley, P., Ahmed, N., Baynes, J., Thorpe, S. and Kukudov, G. (2008) Glyoxalase?1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging cell 7: 260-269. https://doi.org/10.1111/j.1474-9726.2008.00371.x
  16. Schalkwijk, C. G., van Bezu, J., van der Schors, Roel C, Uchida, K., Stehouwer, C. D. and van Hinsbergh, V. W. (2006) Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells. FEBS Lett. 580: 1565-1570. https://doi.org/10.1016/j.febslet.2006.01.086
  17. Schlotterer, A., Kukudov, G., Bozorgmehr, F., Hutter, H., Du, X., Oikonomou, D., Ibrahim, Y., Pfisterer, F., Rabbani, N., Thornalley, P., Sayed, A., Fleming, T., Humpert, P., Schwenger, V., Zeier, M., Hamann, A., Stern, D., Brownlee, M., Bierhaus, A., Nawroth, P. and Morcos, M. (2009) C. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 58: 2450-2456. https://doi.org/10.2337/db09-0567
  18. Samuel, V. T., Petersen, K. F. and Shulman, G. I. (2010) Lipid-induced insulin resistance: unravelling the mechanism. The Lancet. 375: 2267-2277. https://doi.org/10.1016/S0140-6736(10)60408-4
  19. Nomura, T., Horikawa, M., Shimamura, S., Hashimoto, T. and Sakamoto, K. (2010) Fat accumulation in Caenorhabditis elegans is mediated by SREBP homolog SBP-1. Genes & Nutrition 5: 17-27. https://doi.org/10.1007/s12263-009-0157-y
  20. Tissenbaum, H. A. (2012) Genetics, life span, health span, and the aging process in Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 67: 503-510.
  21. Greer, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P. and Brunet, A. (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282: 30107-30119. https://doi.org/10.1074/jbc.M705325200
  22. Mendler, M., Riedinger, C., Schlotterer, A., Volk, N., Fleming, T., Herzig, S., Nawroth, P. P. and Morcos, M. (2017) Reduction in ins-7 gene expression in non-neuronal cells of high glucose exposed Caenorhabditis elegans protects from reactive metabolites, preserves neuronal structure and head motility, and prolongs lifespan. J. Diabetes Complications 31: 304-310. https://doi.org/10.1016/j.jdiacomp.2016.09.014
  23. Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ahringer, J., Li, H. and Kenyon, C. (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277-283. https://doi.org/10.1038/nature01789