References
- J.R. Cannon, Y. Lin, S. Wang, Determination of source parameter in parabolic equations, Meccanica 27 (1992), 85-94. https://doi.org/10.1007/BF00420586
- J.R. Cannon and Y. Lin, Determination of parameter p(t) in Holder classes for some semilinear parabolic equations, Inverse Problems 4 (1988), 595-606. https://doi.org/10.1088/0266-5611/4/3/005
- J.R. Cannon and Y. Lin, An inverse problem of finding a parameter in a semi-linear heat equation, J. Math. Anal. Appl. 145 (1990), 470-484. https://doi.org/10.1016/0022-247X(90)90414-B
- J.R. Cannon, Y.P. Lin, and S.Z. Xu, Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations, Inverse Problems 10 (1994), 227-243. https://doi.org/10.1088/0266-5611/10/2/004
- J.R. Cannon and H.M. Yin. A class of nonlinear nonclassical parabolic equations, J. Differential Equations 79 (1989), 266-288. https://doi.org/10.1016/0022-0396(89)90103-4
- J.R. Cannon and H.M. Yin, Numerical solutions of some parabolic inverse problems, Numer. Methods Partial Differential Equations 6 (1990), 177-191. https://doi.org/10.1002/num.1690060207
- J.R. Cannon and H.M. Yin. On a class of nonlinear parabolic equations with nonlinear trace type functionals, Inverse Problems 7 (1991), 149-161. https://doi.org/10.1088/0266-5611/7/1/014
- J.R. Cannon, The one-dimensional heat equation, volume 23 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984.
- Q. Chen and J.J. Liu, Solving an inverse parabolic problem by optimization from final measurement data, J. Comput. Appl. Math. 193 (2006), 183-203. https://doi.org/10.1016/j.cam.2005.06.003
- M. Choulli and M. Yamamoto, Generic well-posedness of an inverse parabolic problem-the Holder-space approach,Inverse Problems, 12 (1996), 195-205. https://doi.org/10.1088/0266-5611/12/3/002
- M. Dehghan, An inverse problems of finding a source parameter in a semilinear parabolic equation, Appl. Math. Modelling 25 (2001), 743-754. https://doi.org/10.1016/S0307-904X(01)00010-5
- M. Dehghan, Efficient techniques for the second-order parabolic equation subject to nonlocal specifications, Appl. Numer. Math. 52 (2005), 39-62. https://doi.org/10.1016/j.apnum.2004.02.002
- V. Isakov, Inverse parabolic problems with the final overdetermination, Comm. Pure Appl. Math. 44 (1991), 185-209. https://doi.org/10.1002/cpa.3160440203
- V. Isakov,Inverse problems for partial differential equations, volume 127 of Applied Mathematical Sciences. Springer-Verlag, New York, 1998.
- A. Kirsch. An introduction to the mathematical theory of inverse problems, volume 120 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996.
- R. Pourgholi, M. Abtahi, and S.H. Tabasi, A numerical approach for solving an inverse parabolic problem with unknown control function,Int. J. Computational Science and Engineering, 10 (2015), 395-401. https://doi.org/10.1504/IJCSE.2015.070994
- A.I. Prilepko, D.G. Orlovsky, and I.A. Vasin, Methods for solving inverse problems in mathematical physics, volume 231 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 2000.
- W. Rundell, The determination of a parabolic equation from initial and final data, Proc. Amer. Math. Soc. 99 (1987), 637-642. https://doi.org/10.1090/S0002-9939-1987-0877031-4
- M. Tadi, M.V. Klibanov, and W. Cai. An inversion method for parabolic equations based on quasireversibility, Comput. Math. Appl. 43 (2002), 927-941. https://doi.org/10.1016/S0898-1221(02)80003-7
- A.N. Tikhonov and V.Y. Arsenin, Solutions of ill-posed problems. V.H. Winston & Sons, Washington, D.C.: John Wiley & Sons, New York, 1977. Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics.
- L. Yang, J.N. Yu, and Z.C. Deng, An inverse problem of identifying the coefficient of parabolic equation, Appl. Math. Model. 32 (2008), 1984-1995. https://doi.org/10.1016/j.apm.2007.06.025