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A TRACE-TYPE FUNCTIONAL METHOD FOR

DETERMINATION OF A COEFFICIENT IN AN INVERSE

HEAT CONDUCTION PROBLEM†

JIN WEN∗ AND JUN-FENG CHENG

Abstract. This paper investigates the inverse problem of determining an

unknown heat radiative coefficient, which is only time-dependent. This is
an ill-posed problem, that is, small errors in data may cause huge deviations
in determining solution. In this paper, the existence and uniqueness of the

problem is established by the second Volterra integral equation theory,
and the method of trace-type functional formulation combined with finite
difference scheme is studied. One typical numerical example using the
proposed method is illustrated and discussed.
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1. Introduction

The identification of coefficients in parabolic equations is an ill-posed problem
that has received considerable attention from several authors in a variety of
fields. Some detailed treatments of problems in these areas can be referred
to [3, 11,14,15,20].

The inverse problem of identifying coefficient q(x) in the following parabolic
equation

ut − uxx + q(x)u = 0, (x, t) ∈ Q (1)

from final overspecified data u(x, T ) has been studied by several authors, and
one can refer to [9, 10, 13, 14, 17–19, 21]. In [10], the authors used the Hölder
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space method to determine the unknown coefficient q(x) from additional infor-
mation at t = T . In [18], existence and uniqueness for the determination of q(x)
were derived by using the contracting mapping principle. In [9, 21], motivated
by heuristic arguments, the optimization method was applied to stabilize the
inverse coefficient problem. The [9] proved the existence of minimizer and the
convergence of approximate solution in finite-dimensional space, while in [21],
the authors constructed a new control functional and prove the existence and
uniqueness of minimizing solution. In [19], numerical solution of q(x) was given
by using the method of quasi-reversibility.

In this paper, we will mainly study the following inverse problem:

ut(x, t) = uxx(x, t) + p(t)u(x, t), (x, t) ∈ Ω× (0, tmax], (2)

u(0, t) = h0(t), u(1, t) = h1(t), (3)

u(x, 0) = φ(x), (4)

u(x∗, t) = ψ(t), (5)

where, φ(x), h0(t), h1(t) and ψ(x) are known functions, and x∗ is a fixed pre-
scribed point in the admissible set. p(t) is an unknown function to be determined.

The existence, uniqueness and some applications of this problem were pre-
sented in [1–7,12]. For the conditions (3) changed by the Neumann’s conditions,
the authors in [16] considered the uniqueness theorem by the uniqueness of the
solution of Volterra integral equation of second kind, and they used the method
of fundamental solutions to give the numerical results.

The organization of this paper is as follows: in Section 2, we try to give
the uniqueness of the proposed problem. Section 3 is devoted to the numerical
technique of trace-type functional method by mathematical formula. A typical
numerical experiment is given in Section 4 to illustrate the effectiveness of our
proposed method. And Section 5 is the conclusion of this paper.

2. Existence and uniqueness

Theorem 1. Suppose that φ(x), h0(t), h1(t), and ψ(t) are continuous functions
such that, for some R > 0, ϵ > 0,

|hi(t)| ≤ R, i = 0, 1, |ψ(t)| ≥ ϵ. (6)

Then, the problem (2)−(5) has a unique solution (u, p).

Proof. According to the transformation in [8]:

u(x, t) = r(t)v(x, t), (7)

where,

r(t) = e
∫ t
0
p(τ)dτ , (8)
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so that

v(x, t) =
u(x, t)

r(t)
, and p(t) =

r′(t)

r(t)
. (9)

Transformation (7)−(9) can eliminate p(t) in (2) and rewrite (2)−(4) as fol-
lows:

vt(x, t) = vxx(x, t), (x, t) ∈ Ω× (0, tmax], (10)

v(0, t) = g(t), v(1, t) = h(t)g(t), (11)

v(x, 0) = φ(x), (12)

where, g(t) = h0(t)
r(t) is an unknown function and h(t) = h1(t)

h0(t)
is a known function.

In this situation the over-specified condition becomes:

v(x∗, t) =
ψ(t)

h0(t)
g(t). (13)

Let us assume, for the moment, that g(t) is known. If we define, for x ∈ R
and t > 0,

K(x, t) =
1

2
√
πt
e−

x2

4t , (14)

θ(x, t) =

∞∑
m=−∞

K(x+ 2m, t), (15)

then, by Cannon ( [8], Theorem 6.3.1), problem (10)−(12) has a unique solution
of the form

v(x, t) = w(x, t)−2

∫ t

0

∂θ

∂x
(x, t−τ)g(τ)dτ+2

∫ t

0

∂θ

∂x
(x−1, t−τ)h(τ)g(τ)dτ, (16)

where,

w(x, t) =

∫ 1

0

[θ(x− ξ, t)− θ(x+ ξ, t)]φ(ξ)dξ

Now, in order to determine g(t), we here impose the condition (13) to (16) and
get the following

G(t) = w(x∗, t) +

∫ t

0

H(t, τ,G(τ))dτ, (17)

where, G(t) = ψ(t)
h0(t)

g(t) and

H(t, τ, s) =
2[ ∂θ∂x (x

∗ − 1, t− τ)h1(τ)− ∂θ
∂x (x

∗, t− τ)h0(τ)]

ψ(τ)
s.

We can see that Eq.(17) is a linear Volterra integral equation of the second kind.
Obviously, w(x∗, t) and H(t, τ, s) are continuous functions and thus, from

the Theorem 8.2.1 in [8], the integral equation (17) has a unique solution if H
satisfies the following Lipschitz condition

|H(t, τ, s1)−H(t, τ, s2)| ≤ L(t, τ)|s1 − s2|, (18)
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where ∫ t

t0

L(t, τ)dτ ≤ α(t− t0) (t > t0) (19)

for some monotone increasing function α, with limη↓0 α(η) = 0, and if∫ t

t0

|H(t, τ, 0)|dτ ≤ β(t− t0) (t > t0) (20)

for some non-negative function β, with limη↓0 β(η) = 0. Since H(t, τ, 0) = 0,
we observe that (20) holds for β = 0 and since h0(t), h1(t), and ψ(t) satisfy the
conditions (6), there exists a constant M , such that

|H(t, τ, s1)−H(t, τ, s2)| ≤M [
∂θ

∂x
(x∗ − 1, t− τ) +

∂θ

∂x
(x∗, t− τ)]|s1 − s2|.

Clearly, for m = 1, 2, · · · , and x∗ ∈ (0, 1), we can obtain

−(x∗ + 2m)2 ≤ −(2m)2

and
−(x∗ − 2m)2 ≤ −(2m− 1)2.

On the other hand, e−x < 1/x2, therefore

∂θ

∂x
(x∗ − 1, t) ≤ 1

2
√
πt

∞∑
m=−∞

| x
∗ − 1 + 2m

2t
| e−(x∗−1+2m)2/4t

≤ 1

2
√
πt

∞∑
m=−∞

| x
∗ − 1 + 2m

2t
| 16t2

(x∗ − 1 + 2m)4

=
4
√
t√
π

∞∑
m=−∞

1

| x∗ − 1 + 2m |3
< A

√
t,

for some constant A. Similarly, there exists a constant B, such that

∂θ

∂x
(x∗, t) < B

√
t.

Thus (19) holds if we take α(η) =M(A+B)
√
η3.

Therefore, the integral equation (17) has a unique solution G(t) and thus
problem (2)−(5) has a solution of the form (16) which is, in fact, unique by
Cannon ( [8], Theorem 6.4.1). �

3. Numerical technique

In this section, we will use the method of trace-type functional to solve the
above inverse problem as follows.

If the functions pair (u, p) solves the inverse problem (2)−(5), then we have

ψt(t) = uxx|x=x∗ + p(t)u(x∗, t). (21)
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From this, we can obtain

p(t) =
ψt(t)− uxx|x=x∗

ψ(t)
. (22)

Substituting (22) to Equation (2) gives the following initial boundary value
problem:

ut(x, t) = uxx(x, t) +
ψt(t)− uxx|x=x∗

ψ(t)
u(x, t), (x, t) ∈ Ω× (0, tmax], (23)

u(0, t) = h0(t), u(1, t) = h1(t) (24)

u(x, 0) = φ(x), (25)

uj+1
i − uji
τ

=
uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2
+k(uji∗), 1 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1,

(26)

uj0 = h0(tj), ujN = h1(tj), 1 ≤ j ≤M, (27)

u0i = φ(xi), 0 ≤ i ≤ N, (28)

k(uji∗) =
ψj+1−ψj

τ − uj
i∗+1

−2uj
i∗+u

j
i∗−1

h2

ψj
uji , (29)

here,

uji∗ =
xi0+1 − x∗

xi0+1 − xi0
uji0 +

xi0 − x∗

xi0 − xi0+1
uji0+1, if i0 ≤ i∗ < i0 + 1. (30)

Now, we give the following finite difference Crank-Nicolson scheme about the
above problem:

[A− 1

2
(
ψj+2

ψj+1
+Φj+1U

j)]U j+1 = BU j +
1

2
(
ψj+1

ψj
+ΦjU

j), (31)

where

A =


1 + r −0.5r 0 0 · · ·
−0.5r 1 + r −0.5r 0 · · ·

. . .
. . .

. . .

0 · · · −0.5r 1 + r −0.5r
0 0 · · · −0.5r 1 + r

 ,
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B =


1− r 0.5r 0 0 · · ·
0.5r 1− r 0.5r 0 · · ·

. . .
. . .

. . .

0 · · · 0.5r 1− r 0.5r
0 0 · · · 0.5r 1− r

 ,

Φj =
1

ψj
(0, · · · , 0︸ ︷︷ ︸

i0−1

,−rxi0 − (x∗ − h)

xi0 − xi0−1
,−r(xi0−1 − (x∗ − h)

xi0−1 − xi0
− 2

xi0+1 − x∗

xi0+1 − xi0
),

−r(xi0+2 − (x∗ + h)

xi0+2 − xi0+1
− 2

xi0 − x∗

xi0 − xi0+1
),−rxi0+1 − (x∗ + h)

xi0+1 − xi0+2
, 0, · · · , 0︸ ︷︷ ︸
M−i0−2

),

U j =


uj0
uj1
...

ujN

 and r = τ
h2 .

After solving the above difference equation, we can give the approximate
solution of p(t) as follows:

pδ(t) =
ψt(t)− uxx|x=x∗

ψ(t)
≈ ψδt (t)− uδxx|x=x∗

ψδ(t)
, (32)

where, the superscript δ means that the approximate solution is obtained by the
noisy data, in which the noisy level is δ.

4. Numerical verification

In this section we test numerical examples to demonstrate the feasibility of
our approach. The examples are performed using MATLAB.
Example: Take the exact solution for the problem (2)–(5) as

u(x, t) = exp(−t2)x, (33)

and we can compute the given data of boundary conditions h0(t), h1(t), ψ(t)
and heat radiative coefficient p(t) directly from (33) as follows:

h0(t) = 0, (34)

h1(t) = exp(−t2), (35)

ψ(t) = exp(−0.25)x, (36)

p(t) = −2t. (37)

The artificial error is introduced into the additional specification data by defining
the function:

ψδ = ψ(1 + δ)

where δ denotes the noisy level.
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Figure 1. The approximate solutions solved by the TTF and
FDM schemes for Example 1 when we choose 100 × 100 grid
points.
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Figure 2. The approximate solutions solved by the TTF and
FDM schemes for Example 1 when we choose 40×40 grid points.

As shown in Figs. 1 and 2, our method solves the model problem quite
effectively in the interval [0.3, 1], but not so well in the rest interval [0, 0.3]. The
main reason is that the finite difference method works not well near the left end
of the time interval. We can see that the numerical accuracy is not too sensitive
to the numbers of grid points.

5. Conclusions
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In this paper, we give a simple method to solve an inverse coefficient problem
in a one-dimensional heat equation, in which we combine the trace-type func-
tional method and finite difference scheme to obtain the numerical solution to
the proposed problem. Numerical experiment shows that our method is stable
and efficient. Of course, the method proposed in our paper can be generalized
to fractional differential equations. That is our future work.
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