DOI QR코드

DOI QR Code

Measurement of Ignition Delay Time of Jet Aviation Fuel

혼합 액체 연료인 항공유의 점화지연시간 측정에 관한 연구

  • Han, Hee Sun (Department of Mechanical Engineering, Sejong University) ;
  • Wang, YuanGang (Department of Mechanical Engineering, Sejong University) ;
  • Kim, Chul Jin (Department of Mechanical Engineering, Sejong University) ;
  • Sohn, Chae Hoon (Department of Mechanical Engineering, Sejong University)
  • Received : 2017.08.30
  • Accepted : 2017.09.08
  • Published : 2017.09.30

Abstract

Jet aviation fuel is one of liquid fuel which are used in aircraft engines. Korean domestic jet fuel, called Jet A-1, is tested for measurement of ignition delay time by using a shock tube manufactured recently. The temperature varies from 680 to 1250 K and the pressure and equivalence ratio of Jet A-1/air are fixed 20 atm and 1.0, respectively, for this experiment. The ignition delay time data of Jet A-1 are compared with those of Jet A, which has similar properties to Jet A-1. The behavior of negative-temperature-coefficient (NTC) is observed in the temperature range 750-900 K. In addition, ignition delay time of iso-octane is measured, which is one of the surrogate components for jet aviation fuel. The experimental data are compared and validated with the previous results from the literatures. A surrogate fuel for the present Jet A-1 consists of 45.2% n-dodecane, 32.1% iso-octane, and 22.7% 1,3,5-trimethylbenzene. The predicted ignition delay time for the surrogate agrees well with the measured one for Jet A-1.

Keywords

References

  1. Coordinating Support of Fuels and Lubricant Research and Development (R&D) 2, Delivery Order 0002 : Handbook of Aviation, Coordinating Research Council Inc., Alpharetta GA, 2004, 1-144.
  2. S.R. Turns. An introduction to combustion, McGraw-Hill, 3rd edition, 2000, 1-676.
  3. B.P. Mullins, Development of a combustion test rig for measuring the ignition delay of fuels, Fuel, 32 (1953) 234-352.
  4. V.L. Zimont, Y.M. Trushin, Ignition lag of hydrocarbon fuels at high temperatures, Combust. Explo. Shock Waves, 3 (1967) 51-56.
  5. F. Ducourneau, Spontaneous combustion of rich air-kerosene mixtures. Entropie., 10 (1974) 11-18.
  6. L.J. Spadaccini, J.A. Tevelde, Autoignition characteristics of aircraft-type fuels, Combust. Flame, 46 (1982) 282-300.
  7. C.P. Wood, V.G. Mcdonnell, R.A. Smith, G.S. Samuelsen, Development and application of a surrogate distillate fuel, J. Propul. Power, 5 (1989) 399-405. https://doi.org/10.2514/3.23168
  8. A.J. Dean, O.G. Penyazkov, K.L. Sevruk, B. Varatharajan, Autoignition of surrogate fuels at elevated temperatures and pressures, Proc. Combust. Inst., 31 (2007) 2481-2488. https://doi.org/10.1016/j.proci.2006.07.162
  9. S.S. Vasu, D.F. Davidson, R.K. Hanson, Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions, Combust. Flame, 152 (2008) 125-143. https://doi.org/10.1016/j.combustflame.2007.06.019
  10. S. Dooley, S.H. Won, M. Chaos, J. Heyne, Y.G. Ju, F.L. Dryer, K. Kumar, C.J. Sung, H.W. Wang, M.A. Oehlschlaeger, R.J. Santoro, T.A. Litzinger, A jet fuel surrogate formulated by real fuel properties, Combust. Flame, 157 (2010) 2333-2339. https://doi.org/10.1016/j.combustflame.2010.07.001
  11. H. Wang, M.A. Oehlschlaeger, Autoignition studies of conventional and Fischer-Tropsch jet fuels, Fuel, 98 (2012) 249-258. https://doi.org/10.1016/j.fuel.2012.03.041
  12. S. Dooley, S.H. Won, J. Heyne, T.I. Farouk, Y. Ju, F.L. Dryer, K. Kumar, X. Hui, C.J. Sung, H. Wang, M.A. Oehlschlaeger, V. Iyer, S. Iyer, T.A. Litzinger, R.J. Santoro, T. Malewicki, K. Brezinsky, The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena, Combust. Flame, 159 (2012) 1444-1466. https://doi.org/10.1016/j.combustflame.2011.11.002
  13. H-P.S. Shen, J. Vanderover, M.A. Oehlschlaeger, A shock tube study of iso-octane ignition at elevated pressures: The influence of diluent gases, Combust. Flame, 155 (2008) 739-355. https://doi.org/10.1016/j.combustflame.2008.06.001
  14. D.F. Davidson, B.M. Gauthier, R.K. Hanson, Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures, Proc. Combust. Inst., 30 (2005) 1175-1182. https://doi.org/10.1016/j.proci.2004.08.004
  15. K. Fieweger, R. Blumenthal, G. Adomeit, Shocktube investigations on the self-ignition of hydrocarbon-air mixtures at high pressures, The 25th Combustion Institute Symposium, 25, 1994, 1579-1585.
  16. H.S. Han, Y.G. Wang, C.J. Kim, C.H. Sohn, Measurement of Ignition Delay Time of Methane/Oxygen Mixture by Using a Shock Tube, J. Korean Soc. Combust., 22 (2017) 8-13.
  17. P. Dievart, H.H. Kim, S.H. Won, Y. Ju, F.L. Dryer, S. Dooley, W. Wang, M.A. Oehlschlaeger, The combustion properties of 1,3,5-trimethylbenzene and a kinetic model, Fuel, 109 (2013) 125-136. https://doi.org/10.1016/j.fuel.2012.11.069
  18. S.S. Vasu, D.F. Davidson, Z. Hong, V. Vasudevan, R.K. Hanson, n-Dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories, Proc. Combust. Inst., 32 (2009) 173-180. https://doi.org/10.1016/j.proci.2008.05.006
  19. H-P.S. Shen, J. Steinberg, J. Vanderover, M.A. Oehlschlaeger, A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at Elevated Pressures, Energy Fuels, 23 (2009) 2482-2489. https://doi.org/10.1021/ef8011036
  20. E.L. Petersen, M.J.A. Rickard, M.W. Crofton, E.D. Abbey, M.J. Traum, D.M. Kalitan, A facility for gas-and condensed-phase measurements behind shock waves, Meas. Sci. Technol., 16 (2005) 1716-1729. https://doi.org/10.1088/0957-0233/16/9/003
  21. S. Downes, A. Knott, I. Robinson, Uncertainty Estimation of Shock Tube Pressure Steps, Proc. 21st IMEKO World Congress on Measurement in Research and Industy, 2015, 1-4.
  22. J.T. Herbon, Shock Tube Measurements of $CH_3+O_2$ Kinetics and the Heat of Formation of the OH Radical, Stanford University, Ph.D. thesis, 2004, 1-172.

Cited by

  1. 수소/공기/희석제 혼합기의 점화지연과 화학반응 특성연구 vol.36, pp.3, 2017, https://doi.org/10.14346/jkosos.2021.36.3.1