DOI QR코드

DOI QR Code

A study on production of dry oxidant by decomposition of H2O2 on K-Mn/Fe2O3 catalyst and NO oxidation process according to simulated flue gas flow

K-Mn/Fe2O3 촉매 상 H2O2 분해에 의한 건식산화제 생성 및 모사 배가스 유량에 따른 NO 산화공정

  • Choi, Hee Young (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Shin, Woo Jin (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Jang, Jung Hee (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Han, Gi Bo (Plant Engineering Center, Institute for Advanced Engineering)
  • 최희영 (고등기술연구원 플랜트엔지니어링센터) ;
  • 신우진 (고등기술연구원 플랜트엔지니어링센터) ;
  • 장정희 (고등기술연구원 플랜트엔지니어링센터) ;
  • 한기보 (고등기술연구원 플랜트엔지니어링센터)
  • Received : 2017.05.29
  • Accepted : 2017.06.28
  • Published : 2017.06.30

Abstract

In this study, NO oxidation process was studied to increase the NO treatment efficiency of pollutant present in exhaust gas. $H_2O_2$ catalytic cracking was introduced as a method of producing dry oxidizing agents with strong oxidizing power. The $K-Mn/Fe_2O_3$ heterogeneous catalysts applicable to the $H_2O_2$ decomposition process were prepared and their physico-chemical properties were investigated. The prepared dry oxidant was applied to the NO oxidation process to treat the simulated exhaust gas containing NO, NO conversion rates close to 100% were confirmed at various flow rates (5, 10, 20 L/min) of the simulated flue gas.

본 연구에서는 배가스 내 존재하는 오염물질인 NO의 처리효율을 증대시키기 위하여 NO 산화공정을 연구하였으며, 강력한 산화력의 건식산화제를 제조하는 방법으로 $H_2O_2$ 촉매분해가 도입되었다. $H_2O_2$ 분해공정 상에서 적용 가능한 $K-Mn/Fe_2O_3$ 불균일계 촉매가 제조되었으며, 이들이 가지는 물리화학적 특성이 $H_2O_2$ 분해반응에 미치는 영향이 조사되었다. 제조된 건식산화제는 NO가 포함된 모사 배가스를 처리하기 위한 NO 산화공정에 적용되었으며, 다양한 모사 배가스의 유량(5, 10, 20 L/min)에서 약 100% 가까운 NO 전환율을 확인 하였다.

Keywords

References

  1. Qi and R. T. Yang, Low-temperature selective catalytic reduction of NO with $NH_3$ over iron and manganese oxides supported on titania, Appl. Catal., B, 44, 217-225 (2003). https://doi.org/10.1016/S0926-3373(03)00100-0
  2. Jang, J. H., Choi, H. Y. & Han, G. B., Production of Dry Oxidant through Catalytic $H_2O_2$ Decomposition over Mn-based Catalysts for NO Oxidation., Clean Technology, 21, 2, 130-139 (2015). https://doi.org/10.7464/ksct.2015.21.2.130
  3. Wang, X., Wu, S., Zou, W., Yu S., Gui K., Dong L., Fe-Mn/$Al_2O_3$ catalysts for low temperature selective catalytic reduction of NO with $NH_3$, Chinese Journal of Catalysis, 37,8, 1314-1323 (2016). https://doi.org/10.1016/S1872-2067(15)61115-9
  4. Wang, X. and Gui, K., $Fe_2O_3$ particles as superior catalysts for low temperature selective catalytic reduction of NO with $NH_3$, Journal of Environmental Sciences, 25,12, 2469-2475 (2013). https://doi.org/10.1016/S1001-0742(12)60331-3
  5. Lin, S. S. & Gurol, M. D., Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics Mechanism and Implications., Environ. Sci. Technol., 32, 10, 1417-1423 (1998). https://doi.org/10.1021/es970648k
  6. Hu, H., Zha, K., Li, H., Shi, L., Zhang, D. In situ DRIFTs investigation of the reaction mechanism over M$NO_X$-MOy/ Ce0.75Zr0.25O2 (M = Fe, Co, Ni, Cu) for the selective catalytic reduction of $NO_X$ with $NH_3$, Applied Surface Science, 387, 30, 921-928 (2016). https://doi.org/10.1016/j.apsusc.2016.07.022
  7. Lousada, C. M. & Jonsson, M., Kinetics Mechanism and Activation Energy of $H_2O_2$ Decomposition on the Surface of $ZrO_2$., J. Phys. Chem. C., 114, 25, 11202-11208 (2010). https://doi.org/10.1021/jp1028933
  8. Pham, A. L.-T., Lee, C., Doyle, F. M. & Sedlak, D. L. A., Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values., Environ. Sci. Technol., 43, 8930-8935 (2009). https://doi.org/10.1021/es902296k
  9. Adewuyi, Y. G. & Owusu, S. O., Ultrasound-Induced Aqueous Removal of Nitric Oxide from Flue Gases: Effects of Sulfur Dioxide, Chloride, and Chemical Oxidant, J. Phys. Chem. A., 110, 38, 11098-11107 (2006).
  10. Ding, J., Zhong, Q., Zhang, S., Song, F., & Bu, Y., Simultaneous Removal of $NO_X$ and $SO_2$ from Coal-Fired Flue Gas by Catalytic Oxidation-Removal Process with $H_2O_2$., Chem. Eng. J., 243, 176-182 (2014). https://doi.org/10.1016/j.cej.2013.12.101
  11. Mauldin, R.L., Kosciucha, E., Henrya, B., Eiselea, F.L., & Shettera, R., Measurements of OH, $HO_2$ + $RO_2$, $H_2SO_4$, and MSA at the south pole during ISCA 2000., Atmos. Environ., 38, 5423-5437 (2004). https://doi.org/10.1016/j.atmosenv.2004.06.031
  12. Thomas, D., & Vanderschuren, J., Modeling of $NO_X$ Absorption into Nitric Acid Solutions Containing Hydrogen Peroxide., Ind. Eng. Chem. Res., 36, 3315-3322 (1997). https://doi.org/10.1021/ie960436g
  13. Park, S.Y., Deshwal, B.R., & Moon, S. H., $NO_X$ Removal from The Flue Gas of Oil-Fired Boiler using a Multistage Plasma-Catalyst Hybrid System., Fuel Process. Technol., 89, 540-548 (2008). https://doi.org/10.1016/j.fuproc.2007.10.002
  14. Jang, H,H and Han, G,B., A study on the NO oxidation using dry oxidant produced by the catalytic conversion of $H_2O_2$, J. of Korean Oil Chemists' Soc., Vol. 33, No.1., 100-109 (2016). https://doi.org/10.12925/jkocs.2016.33.1.100