DOI QR코드

DOI QR Code

대사에너지가 열 스트레스에 노출된 오리의 간, 십이지장 융모, 미생물, 유전자 조절에 미치는 영향

Influence of metabolizable energy on histology of liver and duodenal villus, microflora, heat shock protein gene in duck under heat stress

  • 신종서 (강원대학교 동물생명과학대학) ;
  • 양부근 (강원대학교 동물생명과학대학) ;
  • 박병성 (강원대학교 동물생명과학대학)
  • Shin, Jong-Suh (College of Animal Life Science, Kangwon National University) ;
  • Yang, Boo-Keun (College of Animal Life Science, Kangwon National University) ;
  • Park, Byung-Sung (College of Animal Life Science, Kangwon National University)
  • 투고 : 2017.08.13
  • 심사 : 2017.09.05
  • 발행 : 2017.09.30

초록

본 연구는 열 스트레스 하에서 오리사료 내 대사에너지(ME) 수준이 오리의 간, 십이지장 융모, 미생물, 유전자 조절에 미치는 영향을 조사하였다. 총 240마리의 육용 오리 채리밸리(Anas platyrhynchos)를 4처리구로 완전임의배치 한 후 42일 동안 사육하였다. 처리구는 ME 2900 kcal/kg, ME 3000 kcal/kg, ME 3100 kcal/kg 및 ME 3200 kcal/kg로 구분하였다. 간 조직은 처리구 사이의 차이가 없었고, 십이지장 융모 및 창자샘 길이는 ME 3000과 비교할 때 2900은 10.58% 감소하였으나 3100, 3200과의 사이에 차이는 없었다. 맹장 Latobacillus는 ME 3000과 비교할 때 2900은 9.47% 감소하였으나 3100, 3200은 각각 2.52, 3.24% 증가하였다. Total aerobic bacteria, E. coli, Coliform bacteria는 ME 3000과 비교할 때 2900은 증가하였으나 3100, 3200은 차이가 나타나지 않았다. 간에서 HSP (heat shock proteins)-mRNA 중 HSP $90-{\alpha}$는 ME 3000과 비교할 때 2900은 48.60% 감소하였으며 3100, 3200은 차이가 없거나 증가하였다.

The object of this study was to determine the influence of dietary metabolic energy (ME) on ..... A total of 240 meat ducks Cherry valley (Anas platyrhynchos) were assigned into four treatment groups with a randomized block design for 42 days. The four treatments were: ME 2900 kcal/kg, ME 3000 kcal/kg, ME 3100 kcal/kg, and ME 3200 kcal/kg. There was no difference in liver tissue among the treatments. The duodenal villi and crypt depth length decreased by 10.58% in 2900 compared with ME 3000, but there was no difference between 3100 and 3200. Counts of caecal Latobacillus decreased by 9.47% in 2900 compared to ME 3000, but increased by 2.52 and 3.24% in 3100 and 3200, respectively. Total aerobic bacteria, E. coli and Coliform bacteria were increased by 2900 when compared to ME 3000, but there was no difference between 3100 and 3200. HSP $90-{\alpha}$ among the heat shock proteins (HSPs)-mRNA in the liver was reduced by 48.60% in 2900 compared to ME 3000, while 3100 and 3200 showed no difference or increased.

키워드

참고문헌

  1. L. Tomanek, Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs, J. Exp. Biol, 213, 971-979 (2010) https://doi.org/10.1242/jeb.038034
  2. F. Di Domenico, R. Sultana, C. F. Tiu, N. N. Scheff, M. Perluigi, C. Cini, D. A. Butterfield, Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of alzheimer disease, Brain. Res, 1333, 72-81 (2010) https://doi.org/10.1016/j.brainres.2010.03.085
  3. J. Yu, E. Bao, J. Yan, L. Lei, Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers, Cell Stress and Chaperones, 13, 327-335 (2008) https://doi.org/10.1007/s12192-008-0031-7
  4. B. W. Wang, X. P. Wu, X. H. Zhang, X. H. Jia, M. A. Zhang, F. Y. Long, Z. G. Yang, L. Wang, Expression and purification of goose HSP70 and compound formation with virus polypeptide, Agr. Sci. China, 7, 239-247 (2008) https://doi.org/10.1016/S1671-2927(08)60045-0
  5. K. Sahin, O. Kucuk, Heat stress and dietary vitamin supplementation of poultry diets, Nutrition Abstracts and Reviews. Series B: Livestock Feeds and Feeding, 1, 41-50 (2001)
  6. M. M. Mashaly, G. L. Hendricks, M. A. Kalama, A. E. Gehad, A. O. Abbas, P. H. Patterson, Effect of heat stress on production parameters and immune responses of commercial laying hens, Poult. Sci, 83, 889-894 (2004) https://doi.org/10.1093/ps/83.6.889
  7. M. U. Sohail, M. E. Hume, J. A. Byrd, D. J. Nisbet, A. Ijaz, A. Sohail, M. Z. Shabbir, H. Rehman, Effect of supplementation of prebiotic mannan oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress, Poult. Sci, 91, 2235-2240 (2012) https://doi.org/10.3382/ps.2012-02182
  8. H. P. Fan, M. Xie, W. W. Wang, S. S. Hou, W. Huang, Effects of dietary energy on growth performance and carcass quality of white growing Pekin ducks from two to six weeks of age, Poult. Sci, 87, 1162-1164 (2008) https://doi.org/10.3382/ps.2007-00460
  9. M. Xie, Y. Guo, T. Zhang, S. Hou, W. Huang, Lysine requirement of male white pekin ducklings from seven to twenty-one days of age, Asian-Aust. J. Anim. Sci, 22, 1386-1390 (2009) https://doi.org/10.5713/ajas.2009.90142
  10. P. M. Hocking, R. Bernard, G. W. Robertson, Effects of low dietary protein and different allocations of food during rearing and restricted feeding after peak rate of lay on egg production, fertility and hatchability in female broiler breeders, Br. Poult. Sci, 43, 94-103 (2002) https://doi.org/10.1080/00071660120109908
  11. R. Nukreaw, C. Bunchasak, Effect of supplementing synthetic amino acids in low-protein diet and subsequent re-feeding on growth performance, serum lipid profile and chemical body composition of broiler chickens, Japan Poult. Sci. Assoc, 52, 127-136 (2015) https://doi.org/10.2141/jpsa.0140102
  12. M. S. Ragab, Impact of betaine supplementation to triticale diets varying in their metabolizable energy content on broiler performance during summer season, Egyptian J. Nutr. Feeds, 16, 113-129 (2013)
  13. J. H. Kim, Nutritional method for high temperature stress relaxation, Kor. Poult. Assoc, 45, 140-142 (2013)
  14. K. Sahin, O. Kucuk, A. Hayiril, S. Prasad, Role of dietary zinc in heat stressed poultry, Poult. Sci, 88, 2176-2183 (2009) https://doi.org/10.3382/ps.2008-00560
  15. M. Ghaffari, M. Shivazad, M. Zaghari, R. Taherkhani, Effects of different levels of metabolizable energy and formulation of diet based on digestible and total amino acid requirements on performance of male broiler, Int. J. Poult. Sci, 6, 276-279 (2007) https://doi.org/10.3923/ijps.2007.276.279
  16. S. Nahashon, N. Adefope, A. Amenyenu, D. Wright, Effects of dietary metabolizable energy and crude protein concentrations on growth performance and carcass characteristics of French guinea broilers, Poult. Sci, 84, 337-344 (2005) https://doi.org/10.1093/ps/84.2.337
  17. J.B. Sim, D.H. Choi, C.R. Kim, B.S. Park. Effect of metabolizable energy on homeostasis of duck in high ambient temperature. Korean J. Oil Chemists' Soc., 34: 132-141 (2017)
  18. Korean feeding standard for poultry. Nutrient requirement of poultry. National Institute of Anmal Science, RDA, Suwon, Korea (2012)
  19. P. I. L. Scot, Training manual, Glasgow Univ, UK (1994)
  20. S. O. Park, B. S. Park, Effect of feeding the high levels of microcapsulated inulin on egg and blood lipid profile in laying hens, Korean J. Oil Chemists' Soc, 29, 214-223 (2012)
  21. IBM SPSS, IBM SPSS statistics 22, Algorithms, Chicago: IBM SPSS Inc (2013)
  22. L. A. Rubio, R. Ruiz, M. J. Peinado, A. Echavarri, Morphology and enzymatic activity of the small intestinal mucosa of Iberian pigs as compared with a lean pig strain, J. Anim. Sci, 88, 3590-3597 (2010) https://doi.org/10.2527/jas.2010-3040
  23. H. M. Jayaprakasha, Y. C. Yoon, H. D. Paik, Probiotic functional dairy foods and health claims: an overview, Food Sci. Biotechnol, 14, 523-528 (2005)
  24. X. H. Gu, Y. Hao, X. L. Wang, Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress, Poult. Sci, 91, 790-799 (2012) https://doi.org/10.3382/ps.2011-01628
  25. T. Zeng, J. J. Li, D. Q. Wang, G. Q. Li, G. L. Wang, L. Z. Lu, Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: evidence for differential thermal sensitivities, Cell Stress and Chaperones, 19, 895-901 (2014) https://doi.org/10.1007/s12192-014-0514-7