DOI QR코드

DOI QR Code

THE NOVELTY OF INFINITE SERIES FOR THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND

  • ROHEDI, A.Y. (DEPARTMENT OF PHYSICS, FACULTY OF MATHEMATICS AND NATURAL SCIENCES, INSTITUT TEKNOLOGI SEPULUH NOPEMBER(ITS)) ;
  • YAHYA, E. (DEPARTMENT OF PHYSICS, FACULTY OF MATHEMATICS AND NATURAL SCIENCES, INSTITUT TEKNOLOGI SEPULUH NOPEMBER(ITS)) ;
  • PRAMONO, Y.H. (DEPARTMENT OF PHYSICS, FACULTY OF MATHEMATICS AND NATURAL SCIENCES, INSTITUT TEKNOLOGI SEPULUH NOPEMBER(ITS)) ;
  • WIDODO, B. (DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICS AND NATURAL SCIENCES, INSTITUT TEKNOLOGI SEPULUH NOPEMBER(ITS))
  • Received : 2017.04.27
  • Accepted : 2017.08.16
  • Published : 2017.09.25

Abstract

According to the fact that the low convergence level of the complete elliptic integral of the first kind for the modulus which having values approach to one. In this paper we propose novelty of the complete elliptic integral which having new infinite series that consists of new modulus introduced as own modulus function. We apply scheme of iteration by substituting the common modulus with own modulus function into the new infinite series. We obtained so many new exact formulas of the complete elliptic integral derived from this method correspond to the number of iterations. On the other hand, it has been also obtained a lot of new transformation functions with the corresponding own modulus functions. The calculation results show that the enhancement of the number of significant figures of the new infinite series of the complete elliptic integral of the first kind corresponds to the level of quadratic convergence.

Keywords

References

  1. M.L. Glasser, Definite Integrals of the Complete Elliptic Integral, Journal of Research of the National Bureau of Standards-B. Mathematical Sciences, 80B (1976), 313-323. https://doi.org/10.6028/jres.080B.032
  2. E. Salamin, Computation of $\pi$ Using Arithmetic Geometric Mean, Mathematics of Computation, 30 (1976), 565-570.
  3. J.M. Borwein and P.B. Borwein, The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions, SIAM Review, 26(1984), 351-366. https://doi.org/10.1137/1026073
  4. O.A. Karlheinz, Comprehensive Analytical Solution of the Nonlinear Pendulum, Eur. J. Phys, 32(2011), 479-490. https://doi.org/10.1088/0143-0807/32/2/019
  5. M.I. Qureshi and A.Q. Kaleem, Analytical Solution of Differential Equation Associated with Simple Pendulum, Gen. Math. Notes, 3(2011), 50-58.
  6. S. Boettner and V.H. Moll, The Integral in Gradshteyn and Ryzhik, Part 16: Complete elliptic integrals, SCIENTIA, Series A: Mathematical Sciences, 20(2010), 45-59.
  7. Z. Nehari, Conformal mapping, Dover Publication INC, 280-283,New York,1976.
  8. T.A. Driscoll and L.N. Trefeten, Schawrtz-christoffel mapping, Cambridge Monographs on Applied and Computational Mathematics, 19, Cambridge University Press, Cambridge, 2002.
  9. W.P. Calixto, B. Alvarenga, J.C.D. Mota, L.D.C. Brito, W. Marcel, A.J. Alves, L.M. Neto, and C.F.R.L.Antunes, Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization. Mathematical Problems in Engineering: Article ID 742039, (2010),19 pages.
  10. H.B. Palmer, The Capacitance of a Parallel-Plate Capacitor by the Schwartz-Christoffel Transformation, AIEE Committee on Electrophysics, 1937,363-366.
  11. T. Chen, J.R. Bowler, and N. Bowler, Analytical Solution for Capacitance Calculation that Conforms to the Curvature of A Homogeneous Cylindrical Dielectric Rod, Applied Physics Letters, 104(2014), 032901. https://doi.org/10.1063/1.4862434
  12. P.W. Cattaneo, Capacitances in Micro-Strip Detectors: A Conformal Mapping Approach, Solid State Electronics : 54(2010), 252-258. https://doi.org/10.1016/j.sse.2009.09.030
  13. A.Y. Rohedi, B.Widodo, and Y.H. Pramono, The New Hilbergs Iteration Schemes of Elliptic Integral Function for Designing All of Microstrip Antenna Based on CPW Structure, International Journal of Microwave and Optical Technology, 12(2017), 281-290.
  14. C.D. Offner, Computing the digits in , Available at www.cs.umb.edu/ offner/files/pi.pdf, 2009.
  15. J.M. Borwein, P.B. Borwein, and D.H. Bailey, Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute a Billion Digits of Pi, American Mathematical Monthly: 96(1989), 201-219. https://doi.org/10.2307/2325206
  16. J.D. Fenton, G.R.S. Gardiner, Rapidly-convergent Methods for Evaluating Elliptic Integrals and Theta Functions, J.Austral.Math.Soc. Series B, 24(1982), 47-58. https://doi.org/10.1017/S0334270000003301
  17. B.C. Carlson, NIST handbook of mathematical functions, 486-492, Cambridge University Press, 2009.
  18. J.M. Borwein and P.B. Borwein, Pi and the agm, Wiley, 7-17, New York, 1987.
  19. M.L. Boas, Mathematical methods in the physical sciences, second edition, John Wiley & Sons, 474-481, Canada, 1983.