References
- M.L. Glasser, Definite Integrals of the Complete Elliptic Integral, Journal of Research of the National Bureau of Standards-B. Mathematical Sciences, 80B (1976), 313-323. https://doi.org/10.6028/jres.080B.032
-
E. Salamin, Computation of
$\pi$ Using Arithmetic Geometric Mean, Mathematics of Computation, 30 (1976), 565-570. - J.M. Borwein and P.B. Borwein, The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions, SIAM Review, 26(1984), 351-366. https://doi.org/10.1137/1026073
- O.A. Karlheinz, Comprehensive Analytical Solution of the Nonlinear Pendulum, Eur. J. Phys, 32(2011), 479-490. https://doi.org/10.1088/0143-0807/32/2/019
- M.I. Qureshi and A.Q. Kaleem, Analytical Solution of Differential Equation Associated with Simple Pendulum, Gen. Math. Notes, 3(2011), 50-58.
- S. Boettner and V.H. Moll, The Integral in Gradshteyn and Ryzhik, Part 16: Complete elliptic integrals, SCIENTIA, Series A: Mathematical Sciences, 20(2010), 45-59.
- Z. Nehari, Conformal mapping, Dover Publication INC, 280-283,New York,1976.
- T.A. Driscoll and L.N. Trefeten, Schawrtz-christoffel mapping, Cambridge Monographs on Applied and Computational Mathematics, 19, Cambridge University Press, Cambridge, 2002.
- W.P. Calixto, B. Alvarenga, J.C.D. Mota, L.D.C. Brito, W. Marcel, A.J. Alves, L.M. Neto, and C.F.R.L.Antunes, Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization. Mathematical Problems in Engineering: Article ID 742039, (2010),19 pages.
- H.B. Palmer, The Capacitance of a Parallel-Plate Capacitor by the Schwartz-Christoffel Transformation, AIEE Committee on Electrophysics, 1937,363-366.
- T. Chen, J.R. Bowler, and N. Bowler, Analytical Solution for Capacitance Calculation that Conforms to the Curvature of A Homogeneous Cylindrical Dielectric Rod, Applied Physics Letters, 104(2014), 032901. https://doi.org/10.1063/1.4862434
- P.W. Cattaneo, Capacitances in Micro-Strip Detectors: A Conformal Mapping Approach, Solid State Electronics : 54(2010), 252-258. https://doi.org/10.1016/j.sse.2009.09.030
- A.Y. Rohedi, B.Widodo, and Y.H. Pramono, The New Hilbergs Iteration Schemes of Elliptic Integral Function for Designing All of Microstrip Antenna Based on CPW Structure, International Journal of Microwave and Optical Technology, 12(2017), 281-290.
- C.D. Offner, Computing the digits in , Available at www.cs.umb.edu/ offner/files/pi.pdf, 2009.
- J.M. Borwein, P.B. Borwein, and D.H. Bailey, Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute a Billion Digits of Pi, American Mathematical Monthly: 96(1989), 201-219. https://doi.org/10.2307/2325206
- J.D. Fenton, G.R.S. Gardiner, Rapidly-convergent Methods for Evaluating Elliptic Integrals and Theta Functions, J.Austral.Math.Soc. Series B, 24(1982), 47-58. https://doi.org/10.1017/S0334270000003301
- B.C. Carlson, NIST handbook of mathematical functions, 486-492, Cambridge University Press, 2009.
- J.M. Borwein and P.B. Borwein, Pi and the agm, Wiley, 7-17, New York, 1987.
- M.L. Boas, Mathematical methods in the physical sciences, second edition, John Wiley & Sons, 474-481, Canada, 1983.