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ABSTRACT. According to the fact that the low convergence level of the complete elliptic in-
tegral of the first kind for the modulus which having values approach to one. In this paper
we propose novelty of the complete elliptic integral which having new infinite series that con-
sists of new modulus introduced as own modulus function. We apply scheme of iteration by
substituting the common modulus with own modulus function into the new infinite series. We
obtained so many new exact formulas of the complete ellipticintegral derived from this method
correspond to the number of iterations. On the other hand, ithas been also obtained a lot of new
transformation functions with the corresponding own modulus functions. The calculation re-
sults show that the enhancement of the number of significant figures of the new infinite series of
the complete elliptic integral of the first kind correspondsto the level of quadratic convergence.

1. INTRODUCTION

The complete elliptic integral of the first kindK(k) is one of three elliptic integrals that
getting a lot of attentions. It is not only used by mathematicians but also by engineers. On
the development of scientifics for instance, the complete elliptic integral of the first kind was
commonly used in studying a wide variety of problems involving three dimensional lattices [1],
for creating Pi formula via Arithmetic Geometric Mean [2, 3], for building analytical solution
of the nonlinear pendulum [4], as the basis for generalizingincomplete elliptic integral of the
first kind [5], as the basis of development hypergeometric series [6], etc. Whereas in the fields
of application, it was widely used in the design of electromagnetic devices, namely as basic
function in conformal mapping which is mathematical tool for solving electromagnetic prob-
lems [7, 8, 9], as mathematical model for designing parallelplate capacitor [10], curved patch
capacitor [11], and microstrip [12, 13] that were encountered in the fields of communication
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especially for antennas application and detectors. The first kind K(k) can be used to obtain
the complete elliptic integral of the second kindE(k) because both of these functions having
relationship of ordinary differential equation [14], and Legendre relation [15]. However,K(k)
can be calculated in several ways, that are by using power series, Fourier series, theta functions,
and Landen transformation. The first three methods are only convenient and useful for smallk
(approaching zero), unfortunately they are not convergentfor the value of largek (approaching
one). On the other hand, the Landen transformation is rapidly convergent, but are non-trivial to
be applied [16]. Therefore the enhancement of convergence level of theK(k) which consisting
largek remains interesting to be considered.

In this early assignment, we focus to enhance the convergence level of the complete elliptic
integral of the first kindK(k) by transforming the value of modulusk into an appropriate
modulus functions to produce transformation functions. From the literature review that we
have conducted, there are two well known examples of such modulus transformation, namely
k → ik/k′ andk → (1 − k′)/(1 + k′) that are as the generating transformation functions of
K(k) = 1

k′
K (ik/k′) andK(k) = 2

1+k′
K((1− k′)/(1+ k′)) respectively, in whichi =

√
−1,

andk′ =
√
1− k2 is the complementary of modulusk [17]. Nevertheless, it is necessarry

to find the other forms of transformation function that provide higher degree of convergence
level. For this purpose, we perform modification to the original integral form ofK(k) to
obtain new form of its infinite series. Further, from this newinfinite series will be known the
new transformation function of the elliptic integral and the corresponding modulus function.
The modulus function ofk will be useful to enhance the level ofK(k) convergence through
employing the other scheme of iteration beyond that has beenapplied on previous work as
mentioned in Borwein’s book [18].

2. EQUATIONS AND THEOREMS

2.1. Formulation Of The New Infinite Series Of The Complete Elliptic Integral Of The
First Kind. In order to obtain the new infinite series version of theK(k) , we firstly recall the
following definition of the complete elliptic integral of the first kind that available in so many
text books of mathematics, for instance in Carlson [17], Borwein [18], and Boas [19],

K(k) =

∫ π

2

0

dθ
√

1− k2 sin2θ
, k ∈ (0, 1). (2.1)

We call (2.1) as the original complete elliptic integral of the first kind that after expanding
(1− k2 sinθ)−1/2 and integrating term by term, we obtained the following infinite series,

K(k) =
π

2

[

1 +

(

1

2

)2

k2 +

(

3

8

)2

k4 +

(

5

16

)2

k6 +

(

35

128

)2

k8 + · · ·
]

, (2.2)

in which the three dots means continuing on indefinitely. Theinfinite series ofK(k) corre-
sponds to the form,

K(k) =
π

2

∞
∑

n=0

[

(2n− 1)!!

2n n!

]2

k2n. (2.3)
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The fact that the double factorial of(2n − 1) can be represented as following,

(2n− 1)!! =
(2n)!

2n n!
, (2.4)

then the infinite series in (2.3) can be written in the following form,

K(k) =
π

2

∞
∑

n=0

[

(2n)!

22n n!2

]2

k2n. (2.5)

In formulating the new version of theK(k) infinite series, we firstly modify the integral form in
(2.1) by varying the angleθ into the double angle2θ through the relationship of the following
trigonometric identity,

sin2θ =
1

2
(1− cos2θ). (2.6)

Substituting (2.6) into (2.1) gives,

K(k)N =
1

√

1− k2

2

∫ π

2

0

dθ
√

1− cos2θ
1−2/k2

. (2.7)

where the subscriptN is included to distinguish the new integral from its original form. The
infinite series of the new elliptic integral of (2.7) is obtained in the form,

K(k)N =
π

2
√

1− k2/2

∞
∑

n=0

(4n)!

(23nn!)2(2n)!

(

1

1− 2/k2

)2n

, (2.8)

or it can be written as,

K(k)N =
π

2
√

1− k2/2

∞
∑

n=0

(4n− 1)!

(22nn!)2

(

1

1− 2/k2

)2n

, (2.9)

On both (2.8) and (2.9), we have employed the following relationship of (2.4) by replacing
with , namely,

(4n − 1)!! =
(4n)!

2n (2n)!
, (2.10)

Other form of the new complete elliptic integral of the first kind is of form,

K(k)N =
1

√

1− k2/2

∫ π

2

0

dθ
√

1 + 0.5

(

k

/

√

1− k2/2

)2

cos2θ

,
(2.11)

which having infinite series in the form,

K(k)N =
π

2
√

1− k2/2

∞
∑

n=0

(4n− 1)!!

(23nn!)2

(

k
√

1− k2/2

)4n

, (2.12)
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where for the first four terms as following,

K(k)N =
π

2
√

1− k2/2







1 +
1.3

82

(

k
√

1− k2/2

)4

+
1.3.5.7

1282

(

k
√

1− k2/2

)8

+
1.3.5.7.9.11

30722

(

k
√

1− k2/2

)12

+ · · ·







(2.13)

which can further be simplified to the form,

K(k)N =
π

2
√

1− k2/2







1 +
1

2

3

8

(

1
√

1− 2/k2

)2

+
3

8

35

128

(

1
√

1− 2/k2

)4

+
5

16

231

1024

(

1
√

1− 2/k2

)6

+ · · ·







(2.14)

It appears that (2.14) is the expansion of (2.8) and/or (2.9).

2.2. Formulation Of New Transformation Function For The Complete Elliptic Integral
Of The First Kind. Before performing the step of formulation for finding the newtransforma-
tion function ofK(k) and/orK(k)N , it is necessary to show that really both original and new
version of the complete elliptic integral of first kind are equal. Both integrals are only different
in the convergence level of its infinite series. Of courseK(k)N will reduce toK(k) when
2θ is varied back intoθ. Nevertheless, becausecos 2θ has two definitions, then varying the
cosine ofcos 2θ must be performed one by one of each definition. Beginning by introducing
the following variable,

x =
1

√

1− k2/2
, (2.15)

so thatK(k)N in (2.11) can be written in the form,

K(k)N = x

∫ π/2

0

dθ
√

1 + 0.5(kx)2 cos 2θ
. (2.16)

Further, into (2.16) we firstly subtitute the following cosine of2θ ,

cos 2θ = 1− 2 sin2 θ, (2.17)

which giving the following integral form,

K(k)N = A

∫ π/2

0

dθ
√

1− k21N sin2 θ
, (2.18)
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where

A =
x

√

1 + 0.5(kx)2
=

1
√

1− k2/2

1
√

1 + k2

2
1

1−k2/2

= 1, (2.19)

and

k1N =
kx

√

1 + 0.5(kx)2
= k. (2.20)

With the above values ofA = 1 andk1N = k , it appears that (2.18) has verified the equality
of

K(k)N = K(k). (2.21)

After using the following cosine of2θ

cos 2θ = 2cos2 θ − 1, (2.22)

thenK(k)N in (2.11) can be written as,

K(k)N = B

∫ π/2

0

dθ
√

1− k22N cos2 θ
, (2.23)

where,

B =
x

√

1− 0.5(kx)2
=

1
√

1− k2/2

1
√

1− k2

2
1

1−k2/2

=
1√

1− k2
=

1

k′
, (2.24)

and

k2N =
ikx

√

1− 0.5(kx)2
=

ik

k′
, (2.25)

Further, by using both values ofB andk2N above then (2.23) becomes,

K(k)N =
1

k′

∫ π/2

0

dθ
√

1− (ik/k′)2 cos2 θ
. (2.26)

Equation (2.26) indicates that there is the other form of thecomplete elliptic integral of first
kind K(k) than the original form on (2.1), namely in the form,

K(k) =

∫ π/2

0

dθ√
1− k2 cos2 θ

. (2.27)

Further, by involving the new definition ofK(k), then from (2.26) we obtain the following
transformation function,

K(k)N =
1

k′
K

(

ik

k′

)

. (2.28)

Due to the equality of (2.21), then from (2.28) it can also be formed the following transforma-
tion function,

K(k) =
1

k′
K

(

ik

k′

)

. (2.29)
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Ones can also verify (2.21) and (2.27) form (2.11). Applyingcos 2θ from the (2.17) gives
transformation function in (2.21), while applyingcos 2θ from (2.22) produces transformation
function in (2.28). The equality ofK(k)N andK(k) also presents the equality of transforma-
tion function in (2.29) that giving,

K(k)N =
1

k′
K

(

ik

k′

)

N

. (2.30)

Also, the following transformation function,

K(k) =
2

1 + k′
K

(

1− k′

1 + k′

)

, (2.31)

gives,

K(k)N =
2

1 + k′
K

(

1− k′

1 + k′

)

N

, (2.32)

Nevertheless, due to both infinite seriesK(k) andK(k)N are different then the convergence
level of (2.29) and (2.31) are also different with (2.30) and(2.32), respectively. In order to
obtain the new transformation function ofK(k)N , we explore the right side of (2.32) by
exerting the change of modulusk → (1− k′)/(1 + k′) into K(k)N in (2.7), so we find,

K

(

1− k′

1 + k′

)

N

=

√
2(1 + k′)

√

2(1 + k′)2 − (1− k′)2

∫ π/2

0

dθ
√

1− (1−k′)2 cos 2θ
(1−k′)2−2(1+k′)2

, (2.33)

after applying the following identity,

(1 + k′)2 = 4k′ + (1− k′)2, (2.34)

then (2.33) becomes,

K

(

1− k′

1 + k′

)

N

=

√
2(1 + k′)

√

(1 + k′)2 + 4k′

∫ π/2

0

dθ
√

1 + (1−k′)2 cos 2θ
(1−k′)2+4k′

. (2.35)

In addition, applying the cosine of2θ from (2.17), then (2.35) can be simplified as,

K

(

1− k′

1 + k′

)

N

=

∫ π/2

0

dθ
√

1− ((1− k′)/(1 + k′))2 sin2 θ
. (2.36)

As previous explanation, from (2.36) appears that applyingthe cosine of2θ as in (2.21) only
gives an equality, i.e.,

K

(

1− k′

1 + k′

)

N

= K

(

1− k′

1 + k′

)

. (2.37)

while applying the cosine of2θ from (2.22) gives,

K

(

1− k′

1 + k′

)

N

=
1 + k′

2
√
k′

∫ π/2

0

dθ
√

1−
(

(1− k)/(2i
√
k′)
)2

cos2 θ

,
(2.38)
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while applying the cosine of2θ from (2.22) gives,

K

(

1− k′

1 + k′

)

N

=
1 + k′

2
√
k′

K

(

1− k′

2i
√
k′

)

. (2.39)

Here we introduce1−k′

2i
√
k′

as own modulus function. By considering (2.32), then we obtain,

K(k)N =
1√
k′
K

(

1− k′

2i
√
k′

)

. (2.40)

Finally, we obtain a new transformation function in the following form,

K(k)N =
1√
k′
K

(

1− k′

2i
√
k′

)

N

. (2.41)

2.3. Enhancement The Level Of Convergence Of The Complete Elliptic Integral Of The
First Kind By Applying The Scheme Of Iteration To Its New Tran sformation Function.
As mentioned previously that the infinite series of the complete elliptic integral of the first
kind is slowly convergence. To enhance the level of convergence, we implement the scheme of
iteration to the transformation functions ofK(k). Here, we just involving two transformation
functions in (2.30) and (2.41). Starting with (2.30), afterexerting the change of modulusk →
ik/k′ into (2.8) to formsK (ik/k′)N so we obtain,

K1(k)N =
1

k′
π

2

√

1− 1
2

(

ik
k′

)2

∞
∑

n=0

(4n)!

(23nn!)2(2n)!

(

1

1− 2
(

k′

ik

)2

)2n

, (2.42)

substituting the complementary modulusk′ =
√
1− k2 into (2.42), then we have,

K1(k)N =

√
2π

2
√
2− k2

∞
∑

n=0

(4n)!

(23nn!)2(2n)!

(

k2

2− k2

)2n

. (2.43)

Due to (2.43) can reduce to (2.8), we conclude that the schemeof iteration by the change
modulusk → ik

k′
can not be used to enhance the level of convergence of the complete elliptic

integral of the first kind. Therefore, the implemetation of the iteration scheme is now focused
on (2.41),

Km(k)N =
1√
k′
Km−1

(

1− k′

2i
√
k′

)

N

, m = 1, 2, 3... (2.44)

herem is the step of iteration, whereasK0(k)N is the infinite series of the new version of
elliptic integral in (2.8) and/or (2.9). But for simplicitywe choose the form of infinite series of
(2.9), where for the first iteration(m = 1), we obtain

K1(k)N =
1√
k′
K0

(

1− k′

2i
√
k′

)

N

. (2.45)
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After exerting the change of modulusk → 1−k′

2i
√
k′

into (2.9), we obtain the following infinite

series ofK1(k) , namely:

K1(k)N =

√
2π√

1 + k′2 + 6k′

∞
∑

n=0

(4n− 1)!!

(22nn!)2

(

(
√
1− k′)2√

1 + k′2 + 6k′

)4n

. (2.46)

Further, for the second iteration(m = 2) we obtain,

K2(k)N =
1√
k′
K1

(

1− k′

2i
√
k′

)

N

. (2.47)

However, before applying the change of modulusk → 1−k′

2i
√
k′

into K1(k)N on (2.46), we must

substitutek′ =
√
1− k2 so that (2.47) forms the following infinite series, namely,

K2(k)N =
1√
k′

√
2π

√

2− k2 + 6
√
1− k2

∞
∑

n=0

(4n − 1)!!

(22nn!)2

(

1−
√
1− k2

√

2− k2 + 6
√
1− k2

)4n

.

(2.48)
Finally, the change of modulusk → 1−k′

2i
√
k′

into (2.48) gives,

K2(k)N =
2
√
2π

√

1 + k′2 + 6k′ + 6(1 + k′)
√
4k′

×
∞
∑

n=0

(4n − 1)!!

(22nn!)2





(1−
√
k′)2

√

1 + k′2 + 6k′ + 6(1 + k′)
√
4k′





4n

.

(2.49)

The same procedure to the second iteration, for the third iteration(m = 3),

K3(k)N =
1√
k′
K2

(

1− k′

2i
√
k′

)

N

. (2.50)

we obtain the following infinite series,

K3(k)N =
4
√
2π

√

1 + k′2 + 6k′ + 6(1 + k′)
√
4k′ + 6(1 +

√
k′)2

√

4(1 + k′)
√
4k′

×
∞
∑

n=0

(4n− 1)!!

(22nn!)2









(
√
1 + k′ − 4

√
4k′)2

√

1 + k′2 + 6k′ + 6(1 + k′)
√
4k′ + 6(1 +

√
k′)2

√

4(1 + k′)
√
4k′









4n

.

(2.51)
By similarly way for the fourth iteration(m = 4), we obtain

K4(k)N =
1√
k′
K3

(

1− k′

2i
√
k′

)

N

. (2.52)
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which giving the following infinite series,

K4(k)N =
8
√
2π

√

√

√

√

√

1 + k′2 + 6k′ + 6(1 + k′)
√
4k′ + 6(1 +

√
k′)2

√

4(1 + k′)
√
4k′

+ 12(
√
1 + k′ +

4
√
4k′)2(1 +

√
k′)

4

√

4(1 + k′)
√
4k′

×
∞
∑

n=0

(4n− 1)!!

(22nn!)2

(

1 +
√
k′ − 4

√

4(1 + k′)
√
4k′
)2

√

√

√

√

√

1 + k′2 + 6k′ + 6(1 + k′)
√
4k′ + 6(1 +

√
k′)2

√

4(1 + k′)
√
4k′

+ 12(
√
1 + k′ +

4
√
4k′)2(1 +

√
k′)

4

√

4(1 + k′)
√
4k′

.

(2.53)
After performing the simplification of algebra processes, the first four exact formulas ofKm(k)N
infinite series above can be expressed in each transformation function, namely,

K1(k)N =
1

k′
K(k1)N , k1 =

1− k′

2i
√
k′

(2.54)

K2(k)N =
2K(k2)N

√

(1 + k′)
√
4k′

, k2 =
(1−

√
k′)2

2i
√

(1 + k′)
√
4k′

(2.55)

K3(k)N =
4K(k3)N

(1 +
√
k′) 4

√

4(1 + k′)
√
4k′

, k3 =
(
√
1 + k′ − 4

√
4k′)2

2i(1 +
√
k′) 4

√

4(1 + k′)
√
4k′

(2.56)

and

K4(k)N =
8K(k4)N

(√
1 + k′ + 4

√
4k′
)

√

2(1 +
√
k′) 4

√

(1 + k′)
√
4k′

,

k4 =

(

1 +
√
k′ − 4

√

4(1 + k′)
√
4k′
)2

2i
(√

1 + k′ + 4
√
4k′
)

√

2(1 +
√
k′) 4

√

(1 + k′)
√
4k′

(2.57)

wherek1 , k2 ,k3 , andk4 are the corresponding own modulus functions of first four itera-
tions.

3. RESULT AND DISCUSSION

The discussion about the enhance of the convergence level ofthe complete elliptic integral
of the first kind here is focused to give some comments to achievement of significant figures
of both original and new infinite series. All calculations were performed by using the facilities
of integral, summation, and evaluation of function that available on MapleV-Soft. Beginning
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by presenting the calculations results of the significant figures of infinite series of the orig-
inal K(k) in (2.2) as shown in Table 1. Here,l denotes the highest term in each infinite

TABLE 1. Significant figures of infinite series of the original for the number
of terms multiple of ten

l k=1/10 k=9/10
0 1.570796326. . . 1.570796326. . .
10 1.574745562. . . 2.262667579. . .
20 1.574745562. . . 2.279280028. . .
30 1.574745562. . . 2.280439683. . .
40 1.574745562. . . 2.280538812. . .

series ofK(l) After comparing the numerical values of the original integral form in (2.1) i.e.,
K(1/10) = 1.574745562 1517356 . . . andK(9/10) = 2.28054913 8422770 . . ., the num-
ber of significant figures for the modulusK(9/10) that are too little and slow for the number
of terms multiple of ten comparing with the achievement ofk = 1/10 . It has verified the
statement in [16] that power series of the complete ellipticintegral of the first kind is slowly
convergent for the value of modulusk approaches one. Further, to verify our statement above
that really the exact values of the original elliptic integral in (2.1) and both of its new version
in (2.7) and (2.11) are equal, we present the results of calculation in Table 2 below. Here we
truncate numerical value of all calculations up to 16 significant figures. However, as shown in

TABLE 2. The exact value of the original and new version of the complete
elliptic integral of the first kind.

k K(k) K(k)N
1/10 1.574745561517356. . . 1.574745561517356. . .
1/2 1.685750354812596. . . 1.685750354812596. . .

1/
√
2 1.854074677301372. . . 1.854074677301372. . .

9/10 2.280549138422770. . . 2.280549138422770. . .

the following Table 3, the numerical values of both infinite seriesK(k) andK(k)N are still
different. Although to reach 16 significant figures are stillrequired so many terms, but it ap-
pears that for all of modulus the number of terms required by theK(k)N are more little. This
fact as a guarantee that the new version of the complete elliptic integral of the first kind is faster
to converge compared to the original one. The enhancement convergence level of the complete
elliptic integral of the first kind can be traced by considering the significant figures resulted for
each highest term of the original version of the complete integralK(k) on (2.5),K(k)N of
the new version on (2.12), and the iterative versionK1(k)N on (2.42). The calculation results
for the values of modulus 1/10.1/

√
2, and 9/10 can be seen in Table 4 below, The results of

calculation for the three values of modulusk ranging from small until big values as shown in
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TABLE 3. Highest terml of K(k) andK(k)N infinite series to reach 16 sig-
nificant figures

k l of K(k) l of K(k)N
1/10 6 4
1/2 24 8

1/
√
2 45 14

9/10 150 41

TABLE 4. Comparison of Significant figures of the first six terms of the orig-
inal, new, and first iteration of the complete elliptic integral of the first kind

l
K(k) K(k)N K1(k)N

k = 1
10 k = 1

√
2

k = 9
10 k = 1

10 k = 1
√
2

k = 9
10 k = 1

10 k = 1
√
2

k = 9
10

0 3 1 0 5 2 1 12 3 2

1 5 1 0 10 3 2 23 8 5

2 7 2 1 15 3 2 29 10 7

3 9 2 1 20 6 2 41 15 8

4 11 2 1 24 6 2 55 19 10

5 13 3 1 30 7 2 67 23 12

Table 4 confirms again that the significant figures of the new version of the complete elliptic
integral of the first kind are more than the significant figuresof the original integral form. For
closing this discussion, we present the sequence approximation formulas obtained by setting
the highest of terml = 0 into all of new infinite series formulas in (2.46), (2.49), (2.51), and
(2.53), namely:

K1,0(k)N =
π
√
2√

1 + k′2 + 6k′
, (3.1)

K2,0(k)N =
2
√
2π

√

1 + k′2 + 6k′ + 6(1 + k′)
√
4k′

, (3.2)
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K3,0(k)N =
4
√
2π

√

1 + k′2 + 6k′ + 6(1 + k′)
√
4k′ + 6(1 +

√
k′)2

√

4(1 + k′)
√
4k′

,
(3.3)

and

K4,0(k)N =
8
√
2π

√

√

√

√

√

1 + k′2 + 6k′ + 6(1 + k′)
√
4k′ + 6(1 +

√
k′)2

√

4(1 + k′)
√
4k′

+ 12(
√
1 + k′ +

4
√
4k′)2(1 +

√
k′)

4

√

4(1 + k′)
√
4k′

,

(3.4)

By applying the same iteration scheme of (2.44), but here we replaceKm−1

(

1−k′

2i
√
k′

)

N
with

Km−1

(

1−k′

2i
√
k′

)

, whereKm(k) is the infinite series of the original complete elliptic integral in

(2.5). The sequences of approximation formulas for the firstterm ofKm(k) are obtained in the
following forms,

K1,0(k)N =
π

2
√
k′
, (3.5)

K2,0(k)N =
π

√

(1 + k′)
√
4k′

,
(3.6)

K3,0(k)N =
2π

(1 +
√
k′)
√

2(1 + k′)
√
4k′

, (3.7)

K4,0(k)N =
4π

(√
1 + k′ + 4

√
4k′
)

√

2(1 +
√
k′) 4

√

4(1 + k′)
√
4k′

,
(3.8)

On all sequences of approximation formulasKm,l(k)N in (3.1)-(3.4) andKm,l(k) in (3.5)-
(3.8), we have put the subscriptl to indicate the highest term used in each infinite series. As
previously, we setl = 0 which means that all of the successive formulas contain onlyone term.
Finally we present the comparison of calculation results inTable 5,

In the Table 4, although the number of significant figures for all of modulus k increase
with increasing the number of terms, however we can not specify how much the number
enhancement of such significant figures. But from the significant figures of the sequences
of approximation formulas of the first term ofKm,l(k)N as shown in Table 5, it can be
known that the ratio between the number of significant figuresof two successive approxi-
mation formulas is approximately 2, that also holds forKm,l(k). Here, it means that the
enhancement of convergence level of the complete elliptic integral by applying both itera-

tion schemesKm(k)N = 1
√
k′
Km−1

(

1−k′

2i
√
k′

)

N
for the new complete elliptic integral, and

Km(k) = 1
√
k′
Km−1

(

1−k′

2i
√
k′

)

for the original integral form correspond to the level of qua-

dratic convergence. However, the fact that the number of significant figures ofKm,0(k)N that
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TABLE 5. Significant figures of theKm,l(k)N andKm,l(k) for the first term
(l = 0)

l
m = 1 m = 2 m = 3 m = 4

K1,0(k)N K1,0(k) K2,0(k)N K2,0(k) K3,0(k)N K3,0(k) K4,0(k)N K4,0(k)

1/10 12 6 25 12 50 24 101 51

1/2 5 3 13 6 27 13 54 27

1/
√
2 3 2 10 4 21 11 43 21

9/10 2 1 6 3 13 7 30 15

always twice thanKm,0(k) as shown in Table 5 indicates that the infinite series of the com-
plete elliptic integral is faster to converge than the original one. This is related to the utility of
the angle argument in the definition of complete elliptic integrals of the first kind, where the
expression of the double angle2θ gives higher convergence level than the angleθ.

4. CONCLUSIONS

From explanation and discussion above we take several conclusions. The complete elliptic
integral of the first kind can be modified into the new form by varying the argument of angleθ
into the double angle2θ. Applying the scheme of iteration by substituting the common modu-
lus k with the own modulus function1−k′

2i
√
k′

into the new infinite series produces so many new
exact formulas of the complete elliptic integral correspond to the number of iterations. On the
other hand, from the new transformation functions have beenalso obtained a lot of new trans-
formation functions with the corresponding new modulus functions. The calculation results
show that the enhancement of the number of significant figuresof the new infinite series of the
complete elliptic integral of the first kind corresponds to the level of quadratic convergence.
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