참고문헌
- Kwak, J. Y., Chun, T. Y., Shin, S. J., Computational Mechanics, Domain Decomposition Approach to Flexible Multibody Dynamics Simulation, Vol. 53, No. 1, pp. 147-158
- Farhat, C., and Roux, F. X., International Journal for Numerical Methods in Engineering, A Method of Finite Element Tearing and Interconnecting and its Parallel Solution Algorithm, Vol. 32, 1991, pp. 1205-1227. https://doi.org/10.1002/nme.1620320604
- C. Farhat, M. Lesoinne, P. Letallec, K. Pierson, D. Rixen, Int. J. Numer. Meth. Engng, FETI-DP: a dual-primal unified FETI Method- Part I: A Faster Alternative to the Two-level FETI Method, 50, pp. 1523-1554, 2001. https://doi.org/10.1002/nme.76
- Park, K. C., Fellipa, C. A., and Gumaste, U. A., Computational Mechanics, A Localized Version of theMethod of Lagrange Multipliers and its Applications, Vol. 24, Issue 6, 2000, pp. 476-490. https://doi.org/10.1007/s004660050007
- Bauchau, O. A, Epple, A., and Bottasso, C. L., Journal of Computational and Nonlinear Dynamics, Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations, Vol. 4, 2009.
- Bauchau, O. A., Journal of the Franklin Institute, Parallel Computation Approaches for Flexible Multibody Dynamics Simulations, Vol. 347, No. 1, 2010, pp. 53-68 https://doi.org/10.1016/j.jfranklin.2009.10.001
- Kwak, J. Y., Chun, T. Y., and Shin, S. J., Computational Approaches for Large Scale Structural Analysis using Domain Decomposition Technique, 52nd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference 19th 4-7 April 2011, Denver, Colorado
- Vondrak, V., Dostal, Z., Dobias, J., and Ptak, S., Lecture Notes in Computational Science and Engineering, Domain Decomposition Methods in Science and Engineering XVI, pp771-778
- Kwak, J. Y., Chun, T. Y., Cho H. S., and Shin, S. J., Journal of the Korean Society for Industrial and Applied Mathmatics, Advanced Domain Decomposition Method by Local and Mixed Lagrange Multipliers, 18(2.1), 17-26, 2011
- Hashamdar, H., Ibrahim, Z., Jameel, M., International Journal of the Physical Sciences, Finite Element Analysis of Nonlinear Structures with Newmark Method, Vol. 6(2.6), 1395-1403, 2011
- Felippa, C. A.,Computer Methods in Applied Mechanics and Engineering, A Study of Optimal Membrane Triangles with Drilling Freedoms, Vol. 192, No. 16, 2003, pp. 2125-2168. https://doi.org/10.1016/S0045-7825(03)00253-6
- Batoz J. L., Bathe K. J., and Ho L.W., International Journal for Numerical Methods in Engineering, A Study of Three-node Triangular Plate Bending Elements, Vol. 15, 1980, pp. 1771-1812. https://doi.org/10.1002/nme.1620151205
- Khosravi, P., Ganesan, R., and Sedaghati, R., International Journal for Numerical Methods in Engineering, Corotational Non-linear Analysis of Thin Plate and Shells using a New Shell Element, Vol. 69, 2007, pp. 859-885. https://doi.org/10.1002/nme.1791
- Kwak, J. Y., Cho, H., Chun, T. Y., Shin, S. J., International Journal of Aeronautical and Space Sciences, Domain Decomposition Approach Applied for Two- and Three-dimensional Problems via Direct Solution Methodology, 16(2.2), 177-189, 2015 https://doi.org/10.5139/IJASS.2015.16.2.177
- Allman, J., International Journal for Numerical Methods in Engineering, Evaluation of the Constant Strain Triangle with Drilling Rotations, Vol. 26, 1988, pp. 2645-2655. https://doi.org/10.1002/nme.1620261205