References
- C. Bernardi and Y. Maday, Approximation Spectrales de Problemes aux Limites Elliptiques, Springer-Verlag, Paris, 1992.
- C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.
- W.J. Gordon and C.A. Hall, Transfinite element methods: Blending function interpolation over arbitrary curved element domains, Numer. Math., 21 (1973) 109-129. https://doi.org/10.1007/BF01436298
- W.J. Gordon and C.A. Hall, Geometric aspects of the finite element method: construction of curvilinear coordinate systems and their application to mesh generation, Int. J. Numer. Meth. Eng., 7 (1973) 461-477. https://doi.org/10.1002/nme.1620070405
- P. Hessari, S.D. Kim, and B.-C. Shin, Numerical solution for elliptic interface problems using spectral element collocation method, Abstract and Applied Analysis, 2014 (2014) 780769.
- P. Hessari and B.-C. Shin, The least squares pseudo spectral method for Navier-Stokes equations, Comp. Math. Appl., 66 (2013) 318-329. https://doi.org/10.1016/j.camwa.2013.05.009
- S.D. Kim, P. Hessari, and B-C. Shin, Preconditioned spectral collocation method on curved element domains using the Gordon-Hall transformation, Bull. Korean Math. Soc., 15 (2014) 595-612.
- K. Ito and Z. Li, Interface conditions for Stokes equations with a discontinuous viscosity and surface sources, Appl. Math. Lett., 19 (2006) 229-234. https://doi.org/10.1016/j.aml.2005.02.041
- Z. Li, K. Ito, and M-C. Lai, An augmented approach for the Stokes equations with a discontinuous viscosity and singular forces, Comput. fluid, 36 (2007) 622-635. https://doi.org/10.1016/j.compfluid.2006.03.003
- S.D. Kim, H.-C. Lee, and B.C. Shin, Pseudo-spectral least-squares method for the second-order elliptic boundary value problem, SIAM J. Numer. Anal., 41 (2003) 1370-1387. https://doi.org/10.1137/S0036142901398234
- R.J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, (1994) 1019-1044. https://doi.org/10.1137/0731054
- R.J. Leveque and Z. Li, Immersed interface method for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18 (1997) 709-735. https://doi.org/10.1137/S1064827595282532
- A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, 1994.
- C.S. Peskin, Numerical analysis of blood flow in the heart, J Comput. Phys, 25 (1997) 220-252.
- B.C. Shin, Pseudo-spectral least-squares method for elliptic interface problems, J. Korean Math. Soc., 50 (2013) 1291-1310. https://doi.org/10.4134/JKMS.2013.50.6.1291
- B.C. Shin and J.H. Jung, Spectral collocation and radial basis function methods for one-dimensional interface problems, Appl. Numer. Math., 61 (2011) 911-928. https://doi.org/10.1016/j.apnum.2011.03.005
- R. Teman, Navier-Stokes equation. New York: North-Holland; 1977.
- V. Rutka, A staggered grid based explicit jump immersed interface method for two-dimensional Stokes flows, Int J Numer Meth. Fluids, 57 (2008) 1527-1543. https://doi.org/10.1002/fld.1694
- H.S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna, A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. Comput. Phys., 174 (2001) 345-380. https://doi.org/10.1006/jcph.2001.6916