Light Collection Efficiency of Large-volume Plastic Scintillator for Radiation Portal Monitor

방사선 포털 모니터용 대용적 플라스틱 섬광체 내부 빛 수집 효율 평가

  • Received : 2017.05.24
  • Accepted : 2017.09.17
  • Published : 2017.09.30

Abstract

In this paper, we calculate the light photons collection efficiency of large-volume plastic scintillation detector mainly used for radiation portal monitor (RPM). A Monte Carlo light photon transport code, DETECT2000, were used to quantitatively evaluate light collection efficiency of plastic scintillation detector. DETECT2000 calculated the placement of light collection efficiency based on the energy spectrum. We calculated the light collection efficiency relative to the position of the energy spectrum that proportional to the placement of the source. The $850{\times}285{\times}65mm^3$ size of polyvinyl toluene (PVT) scintillator was used for measurements. Through DETECT2000 simulation, the light collection efficiency of $5{\times}5$ arrays were calculated and verification was performed by comparing with experimentally measured. And then, the corrected MCNP simulation by applying the light collection efficiency in $21{\times}13$ arrays was compared and analyzed. Comparing the Monte Carlo simulation with measured results, it shows an average difference of 10.1% in $5{\times}5$ arrays. Particularly, about twice of the difference was found in the edge of first column, which coupled with PMT. In whole $5{\times}5$ array, the overall ratio was the same except for the first column. And then comparing the energy spectra of the $21{\times}13$ array with and without the light collection efficiency, it shows a difference of 6.69% in Compton edge area. The DETECT2000 based light collection efficiency simulation showed well agreement with the point source experiment. And comparing with measured energy spectra, we could compare the differences according to whether or not the light collection efficiency was applied. As a results, it is possible to increase the accuracy and reliability of Monte Carlo simulation results by pre-calculating the light collection efficiency according to the PVT geometry by using the DETECT2000.

Keywords

Acknowledgement

Supported by : 미래창조과학부