DOI QR코드

DOI QR Code

A REMARK ON A STABILITY IN MULTI-VALUED DYNAMICS

  • Chu, Hahng-Yun (Department of Mathematics Chungnam National University) ;
  • Park, Jong-suh (Department of Mathematics Chungnam National University) ;
  • Yoo, Seung Ki (Department of Mathematics Chungnam National University)
  • Received : 2017.01.17
  • Accepted : 2017.01.20
  • Published : 2017.02.15

Abstract

In this article, we consider the Hyers-Ulam stability in multi-valued dynamics. We prove the Hyers-Ulam stability for a cubic set-valued functional equation on multi-valued dynamics by using several methods.

Keywords

References

  1. T. Aoki, On the stability of the linear transformation in the Banach space, J. Math. Soc. Jap. 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. H. Y. Chu, A. Kim, and S. K. Yoo, On the stability of generalized cubic set-valued functional equation, Appl. Math. Lett. 37 (2014), 7-14. https://doi.org/10.1016/j.aml.2014.05.008
  3. H. Y. Chu and S. K. Yoo, On the stability of an additive set-valued functional equation, J. Chungcheong Math. Soc. 27 (2014), 455-467. https://doi.org/10.14403/jcms.2014.27.3.455
  4. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  5. K. W. Jun and H. M. Kim, The generalized Hyer-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878. https://doi.org/10.1016/S0022-247X(02)00415-8
  6. K. W. Jun, H. M. Kim and I. S. Chang, On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl. 7 (2005), 21-33.
  7. H. A. Kenary, H. Rezaei, Y. Gheisari and C. Park, On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory and Appl. 2012 2012:81, 17pp. https://doi.org/10.1186/1687-1812-2012-81
  8. G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional euqtions, Appl. Math. Lett. 24 (2011), 1312-1316. https://doi.org/10.1016/j.aml.2011.02.024
  9. B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.
  10. A. Najati and F. Moradlou, Stability of an Euler-Lagrange type cubic functional equation, Turk. J. Math. 33 (2009), 65-73.
  11. C. Park, D. O'Regan and R. Saadati, Stability of some set-valued functional equations, Appl. Math. Lett. 24 (2011), 1910-1914. https://doi.org/10.1016/j.aml.2011.05.017
  12. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  13. S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.