A REMARK ON A STABILITY IN MULTI-VALUED DYNAMICS

Hahng-Yun Chu*, Jong-suh Park**, and Seung Ki Yoo***

Abstract

In this article, we consider the Hyers-Ulam stability in multi-valued dynamics. We prove the Hyers-Ulam stability for a cubic set-valued functional equation on multi-valued dynamics by using several methods.

1. Introduction

The stability problems of functional equations originated from a question of Ulam [13] concerning the stability of group homomorphisms. D. H. Hyers [4] gave a partial answer to the question of S. M. Ulam for Banach spaces. The Hyer's theorem was generalized by Aoki [1] for additive mappings. Th. M. Rassias [12] proved the stability of a linear mapping by using a Cauchy difference. The stability for set-valued functional equations has been investigated by a number of authors $[2,3,7,8,11]$.

It is obvious that the cubic monomial $f(x)=a x^{3}(a \in \mathbb{R})$ satisfies the functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.1}
\end{equation*}
$$

Every solution of (1.1) is called a cubic mapping. Jun and Kim [5] proved the generalized Hyers-Ulam Rassias stability problem for equation (1.1). Jun et al. [6] studied the cubic functional equation

$$
f(a x+y)+f(a x-y)=a f(x+y)+a f(x-y)+2 a\left(a^{2}-1\right) f(x)
$$

Najati and Moradlou[10] considered general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for an Euler-Lagrange type cubic functional equation $2 m f(x+m y)+2 f(m x-y)=\left(m^{3}+\right.$ $m)[f(x+y)+f(x-y)]+2\left(m^{4}-1\right) f(y)$ with $m \neq 0, \pm 1$.

[^0]Let Y be a Banach space. We propose several notations for subfamilies of $\mathcal{P}(Y)$. Let $C B(Y)$ be the set of all closed bounded subsets of Y and $C C(Y)$ the set of all closed convex subsets of Y. Let $C B C(Y)$ be the set of all closed bounded convex subsets of Y. For elements A, B of $C C(Y)$, we denote $A \oplus B:=\overline{A+B}$. If A is convex, then we obtain that $(\alpha+\beta) A=\alpha A+\beta A$ for all $\alpha, \beta \in \mathbb{R}^{+}$.

In this article, we first define a cubic set-valued functional equation of type ($E L$),
$2 k f(x+k y) \oplus 2 f(k x-y)=\left(k^{3}+k\right) f(x+y) \oplus\left(k^{3}+k\right) f(x-y) \oplus 2\left(k^{4}-1\right) f(y)$ where $k \geq 2$ is an integer. Then we prove the Hyers-Ulam stability problem for the set-valued functional equation.

2. Stability for a set-valued functional equation

In this section, we deal with the Hyers-Ulam stability for the cubic set-valued functional equation(1.2) by using direct method and the fixed point technique. For $A, A^{\prime} \in C B(Y)$, the Hausdorff distance $d_{H}\left(A, A^{\prime}\right)$ between A and A^{\prime} is defined by

$$
d_{H}\left(A, A^{\prime}\right):=\inf \left\{\alpha \geq 0 \mid A \subseteq A^{\prime}+\alpha B_{Y}, A^{\prime} \subseteq A+\alpha B_{Y}\right\}
$$

where B_{Y} is the closed unit ball in Y. The following remark is so useful to compute set-valued equations.

Remark 2.1. Let $A, A^{\prime}, B, B^{\prime}, C \in C B C(Y)$ and $\alpha>0$. Then we have that
(1) $d_{H}\left(A \oplus A^{\prime}, B \oplus B^{\prime}\right) \leq d_{H}(A, B)+d_{H}\left(A^{\prime}, B^{\prime}\right)$;
(2) $d_{H}(\alpha A, \alpha B)=\alpha d_{H}(A, B)$;
(3) $d_{H}(A, B)=d_{H}(A \oplus C, B \oplus C)$.

Let X be a real vector space. We define the cubic set-valued functional equation of type ($E L$).

Definition 2.2. Let $f: X \rightarrow C B C(Y)$ be a mapping and $x, y \in X$. The cubic set-valued functional equation of type ($E L$) is defined by

$$
f(2 x+y) \oplus f(2 x-y)=2 f(x+y) \oplus 2 f(x-y) \oplus 12 f(x) .
$$

Every solution of the cubic set-valued functional equation is said to be a cubic set-valued mapping of type (EL).

In the following theorem, we prove the Hyers-Ulam stability of the cubic set-valued functional equation of type (EL).

Theorem 2.3. Let $k \geq 2$ be an integer and let $\phi: X^{2} \rightarrow[0, \infty)$ be a function with satisfying the property that for every $x, y \in X$,

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{k^{3 i}} \phi\left(k^{i} x, 0\right)<\infty, \lim _{n \rightarrow \infty} \frac{1}{k^{3 n}} \phi\left(k^{n} x, k^{n} y\right)=0 \tag{2.1}
\end{equation*}
$$

Suppose that $f: X \longrightarrow\left(C B C(Y), d_{H}\right)$ is a set-valued mapping with $f(0)=\{0\}$ and

$$
d_{H}\left(2 k f(x+k y) \oplus 2 f(k x-y),\left(k^{3}+k\right) f(x+y) \oplus\left(k^{3}+k\right) f(x-y)\right.
$$

$$
\begin{equation*}
\left.\oplus 2\left(k^{4}-1\right) f(y)\right) \leq \phi(x, y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique cubic set-valued mapping of type (EL) $T: X \rightarrow\left(C B C(Y), d_{H}\right)$ such that

$$
\begin{equation*}
d_{H}(f(x), T(x)) \leq \frac{1}{2 k^{3}} \sum_{i=0}^{\infty} \frac{1}{k^{3 i}} \phi\left(k^{i} x, 0\right) \tag{2.3}
\end{equation*}
$$

for all $x \in X$.
Proof. Put $y=0$ in (2.2). Thus we have

$$
\begin{equation*}
d_{H}\left(2 k f(x) \oplus 2 f(k x), 2\left(k^{3}+k\right) f(x) \oplus 2\left(k^{4}-1\right) f(0)\right) \leq \phi(x, 0) \tag{2.4}
\end{equation*}
$$

for all $x \in X$. By remark2.1, we get

$$
\begin{equation*}
d_{H}\left(2 f(k x), 2 k^{3} f(x)\right) \leq \phi(x, 0) \tag{2.5}
\end{equation*}
$$

for all $x \in X$. Divide by $2 k^{3}$ in (2.5). We get

$$
\begin{equation*}
d_{H}\left(\frac{1}{k^{3}} f(k x), f(x)\right) \leq \frac{1}{2 k^{3}} \phi(x, 0) \tag{2.6}
\end{equation*}
$$

for all $x \in X$. Replace x by $k x$ and multiply by $\frac{1}{k^{3}}$ in (2.6), so we obtain

$$
\begin{equation*}
d_{H}\left(\frac{1}{k^{6}} f\left(k^{2} x\right), \frac{1}{k^{3}} f(k x)\right) \leq \frac{1}{2 k^{6}} \phi(k x, 0) \tag{2.7}
\end{equation*}
$$

for all $x \in X$. From (2.6) and (2.7), we have

$$
\begin{equation*}
d_{H}\left(f(x), \frac{1}{k^{6}} f\left(k^{2} x\right)\right) \leq \frac{1}{2 k^{3}} \phi(x, 0)+\frac{1}{2 k^{6}} \phi(k x, 0) \tag{2.8}
\end{equation*}
$$

for all $x \in X$. Using the induction on n, we get

$$
\begin{equation*}
d_{H}\left(f(x), \frac{1}{k^{3 n}} f\left(k^{n} x\right)\right) \leq \frac{1}{2 k^{3}} \sum_{i=0}^{n-1} \frac{1}{k^{3 i}} \phi\left(k^{i} x, 0\right) \leq \frac{1}{2 k^{3}} \sum_{i=0}^{\infty} \frac{1}{k^{3 i}} \phi\left(k^{i} x, 0\right) \tag{2.9}
\end{equation*}
$$

for all $x \in X$. Divide by $k^{3 m}$ in (2.9) and let x by $k^{m} x$. Thus we obtain $d_{H}\left(\frac{1}{k^{3 m}} f\left(k^{m} x\right), \frac{1}{k^{3(n+m)}} f\left(k^{n+m} x\right)\right)=\frac{1}{k^{3 m}} d_{H}\left(f\left(k^{m} x\right), \frac{1}{k^{3 n}} f\left(k^{n+m} x\right)\right)$

$$
\begin{equation*}
\leq \frac{1}{k^{3 m}} \sum_{i=0}^{\infty} \frac{1}{2 k^{3 i}} \phi\left(k^{m+i} x, 0\right) \tag{2.10}
\end{equation*}
$$

for all $x \in X$. The right-hand side of the inequality (2.10) tends to zero as $m \rightarrow \infty$. Hence the sequence $\left\{\frac{1}{k^{3 n}} f\left(k^{n} x\right)\right\}$ is a Cauchy sequence in $C B C(Y)$. From the completeness of $C B C(Y)$, we define a mapping $T: X \rightarrow\left(C B C(Y), d_{H}\right)$ as

$$
T(x):=\lim _{n \rightarrow \infty} \frac{1}{k^{3 n}} f\left(k^{n} x\right)
$$

for all $x \in X$. By setting $n \rightarrow \infty$ in (2.9), we have the inequality (2.3). Replacing x by $k^{n} x$ and y by $k^{n} y$ and dividing by $k^{3 n}$ in (2.2), we get

$$
\begin{align*}
\frac{1}{k^{3 n}} d_{H}\left(2 k f \left(k^{n}(x+k y)\right.\right. & \oplus 2 f\left(k^{n}(k x-y),\right. \\
\left(k^{3}+k\right)\left[f \left(k^{n}(x+y)\right.\right. & \left.\oplus f\left(k^{n}(k x-y)\right] \oplus 2\left(k^{4}-1\right) f\left(k^{n} y\right)\right) \\
1) & \leq \frac{1}{k^{3 n}} \phi\left(k^{n} x, k^{n} y\right) \tag{2.11}
\end{align*}
$$

for all $x, y \in X$. Taking the limit as $n \rightarrow \infty$, we obtain that T satisfies equation (1.2) for all $x, y \in X$.

To prove uniqueness of the mapping T, let $T^{\prime}: X \rightarrow\left(C B C(Y), d_{H}\right)$ be another cubic set-valued mapping of type (EL) satisfying (1.2). Then we have $T^{\prime}\left(k^{n} x\right)=k^{3 n} T^{\prime}(x)$ for all $x \in X$ and $n \in \mathbb{N}$.

$$
\begin{align*}
d_{H}(T(x) & \left., T^{\prime}(x)\right)=\frac{1}{k^{3 n}} d_{H}\left(T\left(k^{n} x\right), T^{\prime}\left(k^{n} x\right)\right) \\
& \leq \frac{1}{k^{3 n}}\left(d_{H}\left(T\left(k^{n} x\right), f\left(k^{n} x\right)\right)+d_{H}\left(f\left(k^{n} x\right), T^{\prime}\left(k^{n} x\right)\right)\right) \tag{2.12}\\
& \leq \lim _{n \rightarrow \infty} \frac{1}{k^{3 n}} \sum_{i=0}^{\infty} \phi\left(k^{i+n} x, 0\right) \\
& =0
\end{align*}
$$

for all $x \in X$. Thus we get $T(x)=T^{\prime}(x)$ for all $x \in X$ which completes this proof.

Remark 2.4. Let $\phi: X^{2} \rightarrow[0, \infty)$ be a function with satisfying the property

$$
\sum_{i=0}^{\infty} k^{3 i} \phi\left(\frac{1}{k^{i}} x, 0\right)<\infty, \lim _{n \rightarrow \infty} k^{3 n} \phi\left(\frac{1}{k^{n}} x, \frac{1}{k^{n}} y\right)=0 \text { for all } x, y \in X .
$$

Suppose that $f: X \longrightarrow\left(C B C(Y), d_{H}\right)$ is a set-valued mapping with $f(0)=\{0\}$ and

$$
\begin{array}{r}
d_{H}\left(2 k f(x+k y) \oplus 2 f(k x-y),\left(k^{3}+k\right) f(x+y) \oplus\left(k^{3}+k\right) f(x-y)\right. \\
\left.\oplus 2\left(k^{4}-1\right) f(y)\right) \leq \phi(x, y)
\end{array}
$$

for all $x, y \in X$. Then there exists a unique cubic set-valued mapping of type (EL) $T: X \rightarrow\left(C B C(Y), d_{H}\right)$ such that for each $x \in X$,

$$
d_{H}(f(x), T(x)) \leq \frac{1}{2 k^{3}} \sum_{i=1}^{\infty} k^{3 i} \phi\left(\frac{1}{k^{i}} x, 0\right) .
$$

Corollary 2.5. Let $\epsilon \geq 0,0<p<3$ be real numbers. Let $f: X \rightarrow$ $\left(C B C(Y), d_{H}\right)$ be a set-valued mapping with satisfying the property $d_{H}\left(2 k f(x+k y) \oplus 2 f(k x-y),\left(k^{3}+k\right) f(x+y) \oplus\left(k^{3}+k\right) f(x-y) \oplus 2\left(k^{4}-\right.\right.$ 1) $f(y)) \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$. Then there exists a unique cubic set-valued mapping of type (EL)

$$
T: X \rightarrow\left(C B C(Y), d_{H}\right)
$$

that satisfies (1.2) and $d_{H}(f(x), T(x)) \leq \frac{\epsilon}{2\left(k^{3}-k^{p}\right)}\|x\|^{p}$ for all $x \in X$.
Proof. The result directly follows theorem 2.3 by setting

$$
\phi(x, y):=\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$.
Remark 2.6. In the corollary 2.5, we have results by setting $p>3$. That is, we obtain a unique cubic set-valued mapping of type (EL) T given by

$$
T: X \rightarrow\left(C B C(Y), d_{H}\right)
$$

that satisfies (1.2) and $d_{H}(f(x), T(x)) \leq \frac{\epsilon}{2\left(k^{p}-k^{3}\right)}\|x\|^{p}$ for all $x \in X$.
Next we investigate the Hyers-Ulam stability of the cubic set-valued functional equation of type (EL) using the alternative fixed point.

Lemma 2.7. [9] Let (X, d) be a complete generalized metric space and let $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then for each element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty, \forall n \geq n_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in X \mid d\left(J^{n_{0}} x, y\right)<\right.$ $\infty\}$;
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Theorem 2.8. Let $f: X \rightarrow\left(C B C(Y), d_{H}\right)$ be a mapping with $f(0)=\{0\}$ such that
$d_{H}\left(2 k f(x+k y) \oplus 2 f(k x-y),\left(k^{3}+k\right) f(x+y) \oplus\left(k^{3}+k\right) f(x-y)\right.$

$$
\begin{equation*}
\left.\oplus 2\left(k^{4}-1\right) f(y)\right) \leq \phi(x, y) \tag{2.13}
\end{equation*}
$$

for all $x, y \in X$. Suppose that a function $\phi: X^{2} \rightarrow[0, \infty]$ satisfies

$$
\begin{equation*}
\phi(k x, k y) \leq k^{3} L \phi(x, y) \tag{2.14}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique cubic set-valued mapping of type (EL) $T: X \rightarrow\left(C B C(Y), d_{H}\right)$ such that

$$
\begin{equation*}
d_{H}(f(x), T(x)) \leq \frac{1}{2 k^{3}(1-L)} \phi(x, 0) \tag{2.15}
\end{equation*}
$$

for all $x \in X$.
Proof. Setting $y=0$ in (2.13) we have

$$
\begin{gathered}
d_{H}\left(2 k f(x) \oplus 2 f(k x), \quad\left(k^{3}+k\right) f(x) \oplus\left(k^{3}+k\right) f(x) \oplus 2\left(k^{4}-1\right) f(0)\right) \\
\leq \phi(x, 0)
\end{gathered}
$$

for all $x \in X$. By the remark 2.1, we get

$$
\begin{equation*}
d_{H}\left(\frac{1}{k^{3}} f(k x), f(x)\right) \leq \frac{1}{2 k^{3}} \phi(x, 0) \tag{2.16}
\end{equation*}
$$

for all $x \in X$. Let S be the set of all mapping $g: X \rightarrow C B C(Y)$ with $g(0)=\{0\}$. We define a generalized metric on S given by
$d\left(g_{1}(x), g_{2}(x)\right):=\inf \left\{M \in[0, \infty) \mid d_{H}\left(g_{1}(x), g_{2}(x) \leq M \phi(x, 0), x \in X\right\}\right.$, and also define a mapping $J: S \rightarrow S$ by

$$
(J g)(x):=\frac{1}{k^{3}} g(k x)
$$

for every $g \in S$ and $x \in X$. Let M be an arbitrary nonnegative constant with $d\left(g_{1}(x), g_{2}(x)\right) \leq M$. Then we have $d_{H}\left(g_{1}(x), g_{2}(x)\right) \leq M \phi(x, 0)$ for all $x \in X$. Thus we have

$$
\begin{aligned}
d_{H}\left(\left(J g_{1}\right)(x),\left(J g_{2}\right)(x)\right) & =\frac{1}{k^{3}} d_{H}\left(g_{1}(k x), g_{2}(k x)\right) \\
& \leq \frac{1}{k^{3}} M \phi(k x, 0) \\
& \leq M L \phi(x, 0)
\end{aligned}
$$

for all $x \in X$. By the definition of the generaizedl metric, we get that for each $g_{1}, g_{2} \in S$,

$$
d\left(J g_{1}, J g_{2}\right) \leq L d\left(g_{1}, g_{2}\right)
$$

So J is a strictly contractive mapping with the Lipschitz contant L. Using (2.16), we easily obtain that $d(J f, f) \leq \frac{1}{2 k^{3}}$. By lemma 2.7, there exists a unique fixed point T of J given by

$$
T: X \rightarrow\left(C B C(Y), d_{H}\right) \text { such that } J^{n} f \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus we have $T(x)=\lim _{n \rightarrow \infty}\left(J^{n} f\right)(x)=\lim _{n \rightarrow \infty} \frac{1}{k^{3 n}} f\left(k^{n} x\right)$ for all $x \in X$. By lemma 2.7, we also have

$$
d(f, T) \leq \frac{1}{1-L} d(J f, f) \leq \frac{1}{2 k^{3}(1-L)}
$$

It follows from (2.13) and (2.14) that

$$
\begin{aligned}
d_{H}(2 k T(x+k y) & \oplus 2 T(k x-y),\left(k^{3}+k\right) T(x+y) \oplus\left(k^{3}+k\right) T(x-y) \\
& \left.\oplus 2\left(k^{4}-1\right) T(y)\right) \leq \lim _{n \rightarrow \infty} \frac{1}{2 k^{3 n}} \phi\left(k^{n} x, k^{n} y\right)=0
\end{aligned}
$$

for all $x, y \in X$. Therefore $T: X \rightarrow\left(C B C(Y), d_{H}\right)$ is a unique cubic set-valued mapping of type (EL).

REMARK 2.9. Let $0<p<3$ and $\theta \geq 0$ be real numbers. Let $f: X \rightarrow\left(C B C(Y), d_{H}\right)$ with $f(0)=\{0\}$ be a mapping satisfying

$$
\begin{aligned}
d_{H}(2 k f(x+k y) & \oplus 2 f(k x-y),\left(k^{3}+k\right) f(x+y) \oplus\left(k^{3}+k\right) f(x-y) \\
& \left.\oplus 2\left(k^{4}-1\right) f(y)\right) \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
\end{aligned}
$$

for all $x, y \in X$. Then there exists a unique cubic set-valued mapping of type (EL) $T: X \rightarrow\left(C B C(Y), d_{H}\right)$ such that $d_{H}(f(x), T(x)) \leq$ $\frac{\theta}{2\left(k^{3}-k^{p}\right)}\|x\|^{p}$ for all $x \in X$. Using a similar method, we get the same result for the case $p>3$.

References

[1] T. Aoki, On the stability of the linear transformation in the Banach space, J. Math. Soc. Jap. 2 (1950), 64-66.
[2] H. Y. Chu, A. Kim, and S. K. Yoo, On the stability of generalized cubic setvalued functional equation, Appl. Math. Lett. 37 (2014), 7-14.
[3] H. Y. Chu and S. K. Yoo, On the stability of an additive set-valued functional equation, J. Chungcheong Math. Soc. 27 (2014), 455-467.
[4] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
[5] K. W. Jun and H. M. Kim, The generalized Hyer-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[6] K. W. Jun, H. M. Kim and I. S. Chang, On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl. 7 (2005), 21-33.
[7] H. A. Kenary, H. Rezaei, Y. Gheisari and C. Park, On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory and Appl. 2012 2012:81, 17pp.
[8] G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional euqtions, Appl. Math. Lett. 24 (2011), 1312-1316.
[9] B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.
[10] A. Najati and F. Moradlou, Stability of an Euler-Lagrange type cubic functional equation, Turk. J. Math. 33 (2009), 65-73.
[11] C. Park, D. O'Regan and R. Saadati, Stability of some set-valued functional equations, Appl. Math. Lett. 24 (2011), 1910-1914.
[12] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[13] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

Department of Mathematics Chungnam National University Daejon 34134, Republic of Korea
E-mail: hychu@cnu.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 34134, Republic of Korea
E-mail: jpark@cnu.ac.kr

Department of Mathematics
Chungnam National University
Daejeon 34134, Republic of Korea
E-mail: skyoo@cnu.ac.kr

[^0]: Received January 17, 2017; Accepted January 20, 2017.
 2010 Mathematics Subject Classification: 39B52.
 Key words and phrases: Hyers-Ulam stability, set-valued functional equation.
 Correspondence should be addressed to Seung Ki Yoo, skyoo@cnu.ac.kr.

