DOI QR코드

DOI QR Code

알루미늄(Al) 금속연료 조성의 추진제를 이용한 무노즐 부스터 개발

Development of Nozzleless Booster casted to Solid Propellant with Al as a Metal Fuel

  • 투고 : 2017.02.08
  • 심사 : 2017.04.10
  • 발행 : 2017.08.01

초록

램제트 부스터로 사용되는 무노즐 부스터의 특성을 알아보기 위한 연구를 수행하였다. 무노즐 부스터는 수축-팽창되는 고정된 노즐목이 없어 일반적인 모터보다 압력 및 추력에 관련된 성능이 감소한다. 이를 보완하기 위해 금속연료로 알루미늄을 사용하여 밀도비추력이 최대인 고성능 추진제를 개발하였고, 지상연소시험을 통해 세장비(L/D)에 따른 성능 특성을 알아보았다. 동등한 추진제와 동일한 세장비에서 고정된 노즐목을 사용한 일반적인 모터와 비교시 비추력은 75%까지 나타났으나, 동일 평균압력 내에서는 85%까지 나타날 것으로 예측된다.

The study for the performance characteristics of the nozzleless booster used in ramjet booster was carried out. Performances related to pressure and thrust for nozzleless booster are lower than classical motor those because of absence of convergent and divergent sections of nozzle. To solve this problem, it developed a high-performance propellant with maximum impulse density included Al as metal fuel. Using the nozzleless booster casted the propellant, ground test of it was carried out by varying the length-to-diameter ratio (L/D ratio) of the propellant. Specific impulse of nozzleless booster was limited to about 75 percents of its value compared with that of classical motor adapted nozzle in the same propellant and propellant length and will be estimated approximately 85 percents of its value compared with that of classical motor at same average pressure in terms of the curve fitting by our test results.

키워드

참고문헌

  1. Webster, F.F., "Liquid Fueled Integral Rocket Ramjet Technology Review," 14th AIAA/SAE Joint Propulsion Conference, Las Vegas, N.V., U.S.A., AIAA 1978-1108, Jul. 1978.
  2. Webster, F.F., "Integral Rocket/Ramjet Propulsion-Flight Data Correlation and Analysis Techniques," Journal of Spacecraft, Vol. 19, No. 4, pp. 326-336, 1981.
  3. Albert, L., "Nozzleless Booster Hardware Demonstration Progress to Date," 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Boston, M.A., U.S.A., AIAA- 88-3366, Jul. 1988.
  4. Procinsky, I.M. and McHale, C.A., "Nozzleless Boosters for Integral-Rocket- Ramjet Missile Systems," Journal of Spacecraft, Vol. 18, No. 3, pp. 193-199, 1981. https://doi.org/10.2514/3.57804
  5. Farinaccio, R. and Lessard, R., "Nozzleless Booster Performance Study," Technical Report, DREV TR 2001-285, 2011.
  6. Farinaccio, R. and Lessard, R., "Experimental Investigation of High Burn Rate Propellant for use in Nozzleless Boosters," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Huntsville, A.L., U.S.A., AIAA 2000-3320, Jul. 2010.
  7. Gany, A. and Aharon, I., "Internal Ballistics Condiserations of Nozzleless Rocket Motors," Journal of Propulsion and Power, Vol. 15, No. 6, pp. 866-873, 1999. https://doi.org/10.2514/2.5509
  8. Nahon, S., "Nozzleless Solid Propellant Rocket Motors Experimental and Theroetical Investigations," 20th Joint Propulsion Conference, Cincinnati, O.H., U.S.A., Jun. 1984.
  9. Jacobus van Zyl, G. and Keyser, R., "Development of a Composite Propellant with a Low Pressure Exponent Suitable for Nozzleless Booster Motors," 27th international Annual Conference of ICT, Karlsruhe, FRG, Germany, Jun. 1996.
  10. Mcbride, B.C. and Gordon, S., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, II: User Manual and Program Description," NASA RP-1311, 1996.
  11. Blomshield, F.S., "Lessons Learned in Solid Rocket Combustion Instability," AIAA, Missile Sciences Conference, Monterey, C.A., U.S.A, AIAA 2007-5803, Nov. 2006.
  12. Kumar, R.N. and McNAMARA, R.P., "Some Experiments related to L-STAR Instabillity in Rocket Motors," 9th AIAA/SAE Propulsion Conference, Las Vegas, N.V., U.S.A., AIAA 73-1300, Nov. 1973.
  13. Kumar, R.N., "Some Experimental Results on the L-STAR Instability of Metalized Composite Propellants," 13th Aerospace Sciences Meeting, Pasadena, C.A., U.S.A., AIAA 75-226, Jan. 1975.

피인용 문헌

  1. Performance Study of Nozzleless Booster Casted to the High Density Solid Propellant with Zr as a Metal Fuel vol.22, pp.2, 2018, https://doi.org/10.6108/KSPE.2018.22.2.038