DOI QR코드

DOI QR Code

경쟁적 ELISA를 이용한 도파민과 세로토닌의 검출

Detection of Dopamine and Serotonin by Competitive Enzyme-Linked Immunosorbent Assay

  • 남궁수민 (고려대학교 대학원 의생명융합과학과) ;
  • 최정수 (고려대학교 대학원 의생명융합과학과) ;
  • 박지향 (고려대학교 대학원 의생명융합과학과) ;
  • 양만길 (서울대학교병원 의생명연구원) ;
  • 이민우 (고려대학교 대학원 의생명융합과학과) ;
  • 김성욱 (고려대학교 대학원 의생명융합과학과)
  • Namkung, Su Min (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Choi, Jeong Su (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Park, Ji Hyang (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Yang, Man Gil (Biomedical Research Institute, Seoul National University) ;
  • Lee, Min Woo (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Kim, Suhng Wook (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University)
  • 투고 : 2017.07.31
  • 심사 : 2017.08.26
  • 발행 : 2017.09.30

초록

도파민과 세로토닌은 신경전달물질 및 호르몬으로서 미량이지만 체내에서 중요한 기능을 한다. 검체는 혈청과 24시간 뇨를 쓰며, 주로 HPLC-MS를 이용하여 검사한다. 본 연구에서는 항원-항체반응을 이용한 경쟁적 ELISA를 통해 도파민과 세로토닌을 검출하고자 하였다. $5{\mu}g/mL$ BSA conjugate를 96 well 표면에 고정시킨 뒤 각각 농도를 다르게 한 신경전달물질과 1차 항체를 넣어 반응시키고 HRP가 결합된 2차 항체와 TMB를 처리하여 흡광도를 측정하였다. 측정 결과를 토대로 회귀식과 $R^2$값을 구하여 신경전달물질에 대한 항체의 민감도와 신경전달물질 농도와 흡광도 사이의 상관관계를 판단하였다. 도파민은 1차 항체를 6,000배, 7,000배로 희석했을 때 $R^2=0.91$로 신경전달물질 농도와 흡광도의 상관관계가 가장 높게 나타났고, 세로토닌은 3,000배와 6,000배를 제외한 모든 희석배수에서 $R^2{\geq}0.90$의 높은 상관관계를 나타냈다. 도파민과 세로토닌 모두 $1.0{\times}10^{-7}M$ 이하의 저농도에서는 효과적으로 검출되지 않았기 때문에 참고치가 이보다 낮은 혈청 도파민 검출은 HPLC-MS 이용이 필요해 보이지만, 24시간 뇨 도파민과 혈청 및 24시간 뇨 세로토닌의 검출에는 competitive ELISA가 효과적일 것이라 사료된다. 보다 낮은 농도의 신경전달물질도 정확하게 검출하기 위해서는 추가 연구가 필요하다.

Dopamine (DA) and serotonin (5-Hydroxytryptamine, 5-HT) are neurotransmitters and hormones that exist in small amounts but have important role in the body. Serum and 24-hour urine are used as specimens, and are usually examined by HPLC-MS. In this study, we tried to detect DA and 5-HT by competitive ELISA using antigen-antibody (Ab) reaction. After immobilizing $5{\mu}g/mL$ BSA conjugate on a 96-well surface, hormone and primary Ab, which are respectively diluted to different concentrations, were treated. Then, HRP-conjugated secondary Ab and TMB were added to measure absorbance. The regression equation and $R^2$ value were calculated based on absorbance, and sensitivity of Ab to hormone as well as the correlation between hormone concentration and absorbance were determined. In DA ELISA, $R^2$, the correlation between the concentration of hormone and absorbance, was the highest by 0.91 when anti-dopamine Ab was diluted 6,000 times and 7,000 times. In 5-HT ELISA, $R^2$ was bigger than 0.90 in every concentration except 3,000 times and 6,000 times. Both DA and 5-HT were not effectively detected at low concentrations (less than $1.0{\times}10^{-7}M$); and because reference value of serum DA is lower than this, HPLC-MS was required to detect serum DA. However, competitive ELISA may be effective in detecting 24-hour urine DA, serum, and 24-hour 5-HT. Further studies are needed to detect hormones more accurately at lower concentrations.

키워드

참고문헌

  1. The National Collaborating Centre for Chronic Conditions. Parkinson's Disease. 1st ed. London: Royal College of Physicians; 2006. p59-100.
  2. Goldberg L. Cardiovascular and renal actions of dopamine: Potential clinical applications. Pharmacol Rev. 1972;24(1):1-29.
  3. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20(4):415-455. https://doi.org/10.1016/0022-510X(73)90175-5
  4. Gardner D, Shoback D, et al. Greenspan's Basic & clinical endocrinology. 9th ed. New York City: The McGraw-Hill Companies; 2011. Appendix.
  5. Gonzalez-Flores D, Velardo B, Garrido M, Gonzalez- Gomez D, Lozano M, Ayuso M, et al. Ingestion of Japanese plums (Prunus salicina Lindl. cv. Crimson Globe) increases the urinary 6-sulfatoxymelatonin and total antioxidant capacity levels in young, middle-aged and elderly humans: Nutritional and functional characterization of their content. J Food Nutr Res. 2011; 50(4):229-236.
  6. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355-366. https://doi.org/10.1146/annurev.med.60.042307.110802
  7. Neumeister A, Young T, Stastny J. Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter. Psychopharmacology. 2004;174(4):512-524. https://doi.org/10.1007/s00213-004-1950-3
  8. Siddiqi HA, Salwen MJ, et al. Laboratory diagnosis of gastrointestinal and pancreatic disorders. In: McPherson RA, Pincus MR, editors. Henry's Clinical diagnosis and management by laboratory methods. 23rd ed. St Louis, MO: Elsevier; 2017. Chap 22.
  9. Pussard E, Guigueno N, Adam O, Giudicelli JF. Validation of HPLC-amperometric detection to measure serotonin in plasma, platelets, whole blood, and urine. Clin Chem. 1996;42(7):1086-1091.
  10. Carrera V, Sabater E, Vilanova E, Sogorb MA. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. J Chromatogr B Anal Technol Biomed Life Sci. 2007;847(2):88-94. https://doi.org/10.1016/j.jchromb.2006.09.032
  11. Ramesh P, Suresh GS, Sampath S. Selective determination of dopamine using unmodified, exfoliated graphite electrodes. J Electroanal Chem. 2004;561(Suppl 1):173-180. https://doi.org/10.1016/j.jelechem.2003.08.002
  12. Safavi A, Maleki N, Moradlou O, Tajabadi F. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem. 2006;359(2):224-229. https://doi.org/10.1016/j.ab.2006.09.008
  13. Raoof JB, Ojani R, Rashid-Nadimi S. Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films. Electrochim Acta. 2005;50(24):4694-4698. https://doi.org/10.1016/j.electacta.2005.03.002
  14. Belin GK, Seeger S. Rapid analysis of serotonin and propranolol using miniaturized CE with deep-UV fluorescence detector. Electrophoresis. 2009;30(14):2565-2571. https://doi.org/10.1002/elps.200800620
  15. Huisman H, Wynveen P, Setter PW. Studies on the immune response and preparation of antibodies against a large panel of conjugated neurotransmitters and biogenic amines: Specific polyclonal antibody response and tolerance. J Neurochem. 2010;112(3):829-841. https://doi.org/10.1111/j.1471-4159.2009.06492.x
  16. Kim JS, Jeon MS, Paeng KJ, Paeng IS. Competitive enzyme-linked immunosorbent assay for the determination of catecholamine, dopamine in serum. Anal Chim Acta. 2008; 619(1):87-93. https://doi.org/10.1016/j.aca.2008.02.042
  17. Lee IH, Kim YH. Comparison of Methods for Measuring Histamine by ELISA and HPLC-MS Assay In Vitro. Korean J Clin Lab Sci. 2015;47(4):306-312. https://doi.org/10.15324/kjcls.2015.47.4.306