DOI QR코드

DOI QR Code

Detection of Dopamine and Serotonin by Competitive Enzyme-Linked Immunosorbent Assay

경쟁적 ELISA를 이용한 도파민과 세로토닌의 검출

  • Namkung, Su Min (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Choi, Jeong Su (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Park, Ji Hyang (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Yang, Man Gil (Biomedical Research Institute, Seoul National University) ;
  • Lee, Min Woo (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University) ;
  • Kim, Suhng Wook (Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University)
  • 남궁수민 (고려대학교 대학원 의생명융합과학과) ;
  • 최정수 (고려대학교 대학원 의생명융합과학과) ;
  • 박지향 (고려대학교 대학원 의생명융합과학과) ;
  • 양만길 (서울대학교병원 의생명연구원) ;
  • 이민우 (고려대학교 대학원 의생명융합과학과) ;
  • 김성욱 (고려대학교 대학원 의생명융합과학과)
  • Received : 2017.07.31
  • Accepted : 2017.08.26
  • Published : 2017.09.30

Abstract

Dopamine (DA) and serotonin (5-Hydroxytryptamine, 5-HT) are neurotransmitters and hormones that exist in small amounts but have important role in the body. Serum and 24-hour urine are used as specimens, and are usually examined by HPLC-MS. In this study, we tried to detect DA and 5-HT by competitive ELISA using antigen-antibody (Ab) reaction. After immobilizing $5{\mu}g/mL$ BSA conjugate on a 96-well surface, hormone and primary Ab, which are respectively diluted to different concentrations, were treated. Then, HRP-conjugated secondary Ab and TMB were added to measure absorbance. The regression equation and $R^2$ value were calculated based on absorbance, and sensitivity of Ab to hormone as well as the correlation between hormone concentration and absorbance were determined. In DA ELISA, $R^2$, the correlation between the concentration of hormone and absorbance, was the highest by 0.91 when anti-dopamine Ab was diluted 6,000 times and 7,000 times. In 5-HT ELISA, $R^2$ was bigger than 0.90 in every concentration except 3,000 times and 6,000 times. Both DA and 5-HT were not effectively detected at low concentrations (less than $1.0{\times}10^{-7}M$); and because reference value of serum DA is lower than this, HPLC-MS was required to detect serum DA. However, competitive ELISA may be effective in detecting 24-hour urine DA, serum, and 24-hour 5-HT. Further studies are needed to detect hormones more accurately at lower concentrations.

도파민과 세로토닌은 신경전달물질 및 호르몬으로서 미량이지만 체내에서 중요한 기능을 한다. 검체는 혈청과 24시간 뇨를 쓰며, 주로 HPLC-MS를 이용하여 검사한다. 본 연구에서는 항원-항체반응을 이용한 경쟁적 ELISA를 통해 도파민과 세로토닌을 검출하고자 하였다. $5{\mu}g/mL$ BSA conjugate를 96 well 표면에 고정시킨 뒤 각각 농도를 다르게 한 신경전달물질과 1차 항체를 넣어 반응시키고 HRP가 결합된 2차 항체와 TMB를 처리하여 흡광도를 측정하였다. 측정 결과를 토대로 회귀식과 $R^2$값을 구하여 신경전달물질에 대한 항체의 민감도와 신경전달물질 농도와 흡광도 사이의 상관관계를 판단하였다. 도파민은 1차 항체를 6,000배, 7,000배로 희석했을 때 $R^2=0.91$로 신경전달물질 농도와 흡광도의 상관관계가 가장 높게 나타났고, 세로토닌은 3,000배와 6,000배를 제외한 모든 희석배수에서 $R^2{\geq}0.90$의 높은 상관관계를 나타냈다. 도파민과 세로토닌 모두 $1.0{\times}10^{-7}M$ 이하의 저농도에서는 효과적으로 검출되지 않았기 때문에 참고치가 이보다 낮은 혈청 도파민 검출은 HPLC-MS 이용이 필요해 보이지만, 24시간 뇨 도파민과 혈청 및 24시간 뇨 세로토닌의 검출에는 competitive ELISA가 효과적일 것이라 사료된다. 보다 낮은 농도의 신경전달물질도 정확하게 검출하기 위해서는 추가 연구가 필요하다.

Keywords

References

  1. The National Collaborating Centre for Chronic Conditions. Parkinson's Disease. 1st ed. London: Royal College of Physicians; 2006. p59-100.
  2. Goldberg L. Cardiovascular and renal actions of dopamine: Potential clinical applications. Pharmacol Rev. 1972;24(1):1-29.
  3. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20(4):415-455. https://doi.org/10.1016/0022-510X(73)90175-5
  4. Gardner D, Shoback D, et al. Greenspan's Basic & clinical endocrinology. 9th ed. New York City: The McGraw-Hill Companies; 2011. Appendix.
  5. Gonzalez-Flores D, Velardo B, Garrido M, Gonzalez- Gomez D, Lozano M, Ayuso M, et al. Ingestion of Japanese plums (Prunus salicina Lindl. cv. Crimson Globe) increases the urinary 6-sulfatoxymelatonin and total antioxidant capacity levels in young, middle-aged and elderly humans: Nutritional and functional characterization of their content. J Food Nutr Res. 2011; 50(4):229-236.
  6. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355-366. https://doi.org/10.1146/annurev.med.60.042307.110802
  7. Neumeister A, Young T, Stastny J. Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter. Psychopharmacology. 2004;174(4):512-524. https://doi.org/10.1007/s00213-004-1950-3
  8. Siddiqi HA, Salwen MJ, et al. Laboratory diagnosis of gastrointestinal and pancreatic disorders. In: McPherson RA, Pincus MR, editors. Henry's Clinical diagnosis and management by laboratory methods. 23rd ed. St Louis, MO: Elsevier; 2017. Chap 22.
  9. Pussard E, Guigueno N, Adam O, Giudicelli JF. Validation of HPLC-amperometric detection to measure serotonin in plasma, platelets, whole blood, and urine. Clin Chem. 1996;42(7):1086-1091.
  10. Carrera V, Sabater E, Vilanova E, Sogorb MA. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. J Chromatogr B Anal Technol Biomed Life Sci. 2007;847(2):88-94. https://doi.org/10.1016/j.jchromb.2006.09.032
  11. Ramesh P, Suresh GS, Sampath S. Selective determination of dopamine using unmodified, exfoliated graphite electrodes. J Electroanal Chem. 2004;561(Suppl 1):173-180. https://doi.org/10.1016/j.jelechem.2003.08.002
  12. Safavi A, Maleki N, Moradlou O, Tajabadi F. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem. 2006;359(2):224-229. https://doi.org/10.1016/j.ab.2006.09.008
  13. Raoof JB, Ojani R, Rashid-Nadimi S. Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films. Electrochim Acta. 2005;50(24):4694-4698. https://doi.org/10.1016/j.electacta.2005.03.002
  14. Belin GK, Seeger S. Rapid analysis of serotonin and propranolol using miniaturized CE with deep-UV fluorescence detector. Electrophoresis. 2009;30(14):2565-2571. https://doi.org/10.1002/elps.200800620
  15. Huisman H, Wynveen P, Setter PW. Studies on the immune response and preparation of antibodies against a large panel of conjugated neurotransmitters and biogenic amines: Specific polyclonal antibody response and tolerance. J Neurochem. 2010;112(3):829-841. https://doi.org/10.1111/j.1471-4159.2009.06492.x
  16. Kim JS, Jeon MS, Paeng KJ, Paeng IS. Competitive enzyme-linked immunosorbent assay for the determination of catecholamine, dopamine in serum. Anal Chim Acta. 2008; 619(1):87-93. https://doi.org/10.1016/j.aca.2008.02.042
  17. Lee IH, Kim YH. Comparison of Methods for Measuring Histamine by ELISA and HPLC-MS Assay In Vitro. Korean J Clin Lab Sci. 2015;47(4):306-312. https://doi.org/10.15324/kjcls.2015.47.4.306