DOI QR코드

DOI QR Code

Failure Strength of the Composite Mechanical Joint according to the Stacking Angle

적층각 변화에 따른 복합재료 기계적 체결부의 파손강도

  • Jo, Dae-Hyeon (School of Mechanical and Aerospace Engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Kim, Cheol-Hwan (School of Mechanical and Aerospace Engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Choi, Jin-Ho (School of Mechanical and Aerospace Engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University)
  • Received : 2017.04.02
  • Accepted : 2017.08.31
  • Published : 2017.08.31

Abstract

Generally, joints are the weakest part in the composite structures. Composite joints can be classified into adhesive joints and mechanical joints, and mechanical joints are mainly used in areas less sensitive to environmental conditions. In this paper, the failure loads of composite mechanical joints with five different stacking angles are tested and predicted. Finite element analysis of mechanical joints were performed and failure loads were predicted by the FAI(Failure Area Index) method using Tsai-Wu and Yamada-Sun failure criteria, and the predicted failure loads were compared with experimental results. From the experiment and analysis, the failure loads of the mechanical joints were decreased as the ratio of 0 degree layer was low and they could be predicted within 13.03% using the FAI method and Yamada-Sun failure criteria.

일반적인 복합재료 구조물에서 체결부는 가장 취약한 부분이다. 복합재 체결법은 접착 조인트와 기계적 조인트로 크게 나눌 수 있으나, 환경조건에 덜 민감한 부분에는 주로 기계적 조인트가 많이 사용되고 있다. 본 논문에서는 5가지의 적층각 변화를 가지는 복합재료 기계적 조인트의 파손하중을 실험하고 예측하였다. 기계적 조인트에 대한 유한요소 해석을 수행하고 Tsai-Wu와 Yamada-Sun 파손이론을 이용하여 파괴면적지수법(FAI)으로 파손강도를 예측하였으며, 이를 실험 결과와 상호 비교하였다. 실험과 해석결과, 복합재 기계적 체결부는 0도 층의 비율이 낮을수록 파손하중이 저하되었으며, 파괴면적지수법과 Yamada-Sun 파손식으로 13.03% 오차범위 내에서 파손하중을 예측할 수 있었다.

Keywords

References

  1. Chamis, C.C., "Simplified Procedure for Designing Composite Bolted Joints", Journal of Composite Materials, Vol. 9, 1990, pp. 615-626.
  2. Sun, H.T., Chang, F.K., and Qing, X., "The Response of Composite Joint with Bolt-Clamping Loads, Part I : Model Development", Journal of Composite Materials, Vol. 36, 2002, pp. 47-67. https://doi.org/10.1177/0021998302036001301
  3. Sun, H.T., Chang, F.K., and Qing, X., "The Response of Composite Joint with Bolt-Clamping Loads, Part II : Model Development", Journal of Composite Materials, Vol. 36, 2002, pp. 69-92. https://doi.org/10.1177/0021998302036001302
  4. Hart-Smith, L.J., "Mechanically Fastened Joints Fro advanced Composites. Phenomenological Considerations and Simple Analysis", Fibrous Composite in Structural Design. Plenuum Press, 1980, pp. 543-574.
  5. Whitney, J.M., and Nuismer, R.J., "Stress Fracture Criteria for Laminated Composites Containing Stress Concentraions", Journal of Composite Materials, Vol. 8, 1974, pp. 253-265. https://doi.org/10.1177/002199837400800303
  6. Whitney, J.M., and Nuismer, R.J., "Uniaxial Failure of Composite Laminated Containing Stress Concentraions. Fracture mechanics of Composites", ASTM STP 593, 1975, pp. 117-142.
  7. Choi, J.H., Chun, Y.J., and Kweon, J.H., "A Study on the Strength of Mechanically Fastened Composite Joint", Journal of the Korean Society for Composite Materials, Vol. 15, No. 4, 2002, pp. 9-16.
  8. Michael C. Y. Niu. Composite Airframe Structures. Hong Kong Conmilit Press Ltd. Chap. 5, 2005.