References
- Anderson, M., Kim, E. Y., Hagmann, H., Benzing, T. and Dryer, S. E. (2013) Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am. J. Physiol., Cell Physiol. 305, C276-C289. https://doi.org/10.1152/ajpcell.00095.2013
- Bae, Y. M., Kim, A., Lee, Y. J., Lim, W., Noh, Y. H., Kim, E. J., Kim, J., Kim, T. K., Park, S. W., Kim, B., Cho, S. I., Kim, D. K. and Ho, W. K. (2007) Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J. Hypertens. 25, 809-817. https://doi.org/10.1097/HJH.0b013e3280148312
- Beamish, J. A., He, P., Kottke-Marchant, K. and Marchant, R. E. (2010) Molecular regulation of contractile smooth muscle cell phenotype:implications for vascular tissue engineering. Tissue Eng. Part B Rev. 16, 467-491. https://doi.org/10.1089/ten.teb.2009.0630
-
Bergdahl, A., Gomez, M. F., Dreja, K., Xu, S. Z., Adner, M., Beech, D. J., Broman, J., Hellstrand, P. and Sward, K. (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated
$Ca^{2+}$ entry dependent on TRPC1. Circ. Res. 93, 839-847. https://doi.org/10.1161/01.RES.0000100367.45446.A3 - Berridge, M. J., Bootman, M. D. and Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517-529.
- Birnbaumer, L., Zhu, X., Jiang, M., Boulay, G., Peyton, M., Vannier, B., Brown, D., Platano, D., Sadeghi, H., Stefani, E. and Birnbaumer, M. (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc. Natl. Acad. Sci. U.S.A. 93, 15195-15202. https://doi.org/10.1073/pnas.93.26.15195
- Bowman, C. L., Gottlieb, P. A., Suchyna, T. M., Murphy, Y. K. and Sachs, F. (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49, 249-270. https://doi.org/10.1016/j.toxicon.2006.09.030
- Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W. and Sheu, S. S. (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol., Cell Physiol. 287, C817-C833. https://doi.org/10.1152/ajpcell.00139.2004
- Bush, E. W., Hood, D. B., Papst, P. J., Chapo, J. A., Minobe, W., Bristow, M. R., Olson, E. N. and McKinsey, T. A. (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J. Biol. Chem. 281, 33487-33496. https://doi.org/10.1074/jbc.M605536200
- Carafoli, E. (2002) Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. U.S.A. 99, 1115-1122. https://doi.org/10.1073/pnas.032427999
- Chaudhuri, P., Rosenbaum, M. A., Sinharoy, P., Damron, D. S., Birnbaumer, L. and Graham, L. M. (2016) Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proc. Natl. Acad. Sci. U.S.A. 113, 2110-2115. https://doi.org/10.1073/pnas.1600371113
- Chen, J., Crossland, R. F., Noorani, M. M. and Marrelli, S. P. (2009) Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am. J. Physiol. Heart Circ. Physiol. 297, H417-H424. https://doi.org/10.1152/ajpheart.01130.2008
- Chen, X., Yang, D., Ma, S., He, H., Luo, Z., Feng, X., Cao, T., Ma, L., Yan, Z., Liu, D., Tepel, M. and Zhu, Z. (2010) Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels. J. Cell. Mol. Med. 14, 2483-2494. https://doi.org/10.1111/j.1582-4934.2009.00890.x
- Cheng, K. T., Liu, X., Ong, H. L. and Ambudkar, I. S. (2008) Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J. Biol. Chem. 283, 12935-12940. https://doi.org/10.1074/jbc.C800008200
- Christian, H. and Maik, G. (2011) Pharmacological Modulation of Diacylglycerol-Sensitive TRPC3/6/7 Channels. Curr. Pharm. Biotechnol. 12, 35-41. https://doi.org/10.2174/138920111793937943
- Cosens, D. J. and Manning, A. (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285-287. https://doi.org/10.1038/224285a0
- Dietrich, A., Chubanov, V., Kalwa, H., Rost, B. R. and Gudermann, T. (2006) Cation channels of the transient receptor potential superfamily:their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol. Ther. 112, 744-760. https://doi.org/10.1016/j.pharmthera.2006.05.013
- Dietrich, A., Kalwa, H. and Gudermann, T. (2010) TRPC channels in vascular cell function. Thromb. Haemost. 103, 262-270. https://doi.org/10.1160/TH09-08-0517
-
Dietrich, A., Mederos, Y. S. M., Gollasch, M., Gross, V., Storch, U., Dubrovska, G., Obst, M., Yildirim, E., Salanova, B., Kalwa, H., Essin, K., Pinkenburg, O., Luft, F. C., Gudermann, T. and Birnbaumer, L. (2005) Increased vascular smooth muscle contractility in
$Trpc6^{-/-}mice$ . Mol. Cell. Biol. 25, 6980-6989. https://doi.org/10.1128/MCB.25.16.6980-6989.2005 - Du, W., Huang, J., Yao, H., Zhou, K., Duan, B. and Wang, Y. (2010) Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J. Clin. Invest. 120, 3480-3492. https://doi.org/10.1172/JCI43165
- Dyachenko, V., Husse, B., Rueckschloss, U. and Isenberg, G. (2009) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45, 38-54. https://doi.org/10.1016/j.ceca.2008.06.003
- Eder, P. and Molkentin, J. D. (2011) TRPC channels as effectors of cardiac hypertrophy. Circ. Res. 108, 265-272. https://doi.org/10.1161/CIRCRESAHA.110.225888
-
Edwards, J. M., Neeb, Z. P., Alloosh, M. A., Long, X., Bratz, I. N., Peller, C. R., Byrd, J. P., Kumar, S., Obukhov, A. G. and Sturek, M. (2010) Exercise training decreases store-operated
$Ca^{2+}$ entry associated with metabolic syndrome and coronary atherosclerosis. Cardiovasc. Res. 85, 631-640. https://doi.org/10.1093/cvr/cvp308 - Farooqi, A. A., Riaz, A. M. and Bhatti, S. (2013) TRPC signaling mechanisms and therapeutic opportunities: trapdoors are monitored by gatekeepers. Pak. J. Pharm. Sci. 26, 847-852.
- Franz, M. R. and Bode, F. (2003) Mechano-electrical feedback underlying arrhythmias: the atrial fibrillation case. Prog. Biophys. Mol. Biol. 82, 163-174. https://doi.org/10.1016/S0079-6107(03)00013-0
- Fuchs, B., Dietrich, A., Gudermann, T., Kalwa, H., Grimminger, F. and Weissmann, N. (2010) The role of classical transient receptor potential channels in the regulation of hypoxic pulmonary vasoconstriction. Adv. Exp. Med. Biol. 661, 187-200.
-
Golovina, V. A., Platoshyn, O., Bailey, C. L., Wang, J., Limsuwan, A., Sweeney, M., Rubin, L. J. and Yuan, J. X. (2001) Upregulated TRP and enhanced capacitative
$Ca^{2+}$ entry in human pulmonary artery myocytes during proliferation. Am. J. Physiol. Heart Circ. Physiol. 280, H746-H755. https://doi.org/10.1152/ajpheart.2001.280.2.H746 - Gopal, S., Sogaard, P., Multhaupt, H. A., Pataki, C., Okina, E., Xian, X., Pedersen, M. E., Stevens, T., Griesbeck, O., Park, P. W., Pocock, R. and Couchman, J. R. (2015) Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J. Cell Biol. 210, 1199-1211. https://doi.org/10.1083/jcb.201501060
- Harada, M., Luo, X., Qi, X. Y., Tadevosyan, A., Maguy, A., Ordog, B., Ledoux, J., Kato, T., Naud, P., Voigt, N., Shi, Y., Kamiya, K., Murohara, T., Kodama, I., Tardif, J. C., Schotten, U., Van Wagoner, D. R., Dobrev, D. and Nattel, S. (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126, 2051-2064. https://doi.org/10.1161/CIRCULATIONAHA.112.121830
- Hofmann, T., Obukhov, A. G., Schaefer, M., Harteneck, C., Gudermann, T. and Schultz, G. (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259-263. https://doi.org/10.1038/16711
- Inoue, R., Jensen, L. J., Jian, Z., Shi, J., Hai, L., Lurie, A. I., Henriksen, F. H., Salomonsson, M., Morita, H., Kawarabayashi, Y., Mori, M., Mori, Y. and Ito, Y. (2009) Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circ. Res. 104, 1399-1409. https://doi.org/10.1161/CIRCRESAHA.108.193227
- Inoue, R., Jensen, L. J., Shi, J., Morita, H., Nishida, M., Honda, A. and Ito, Y. (2006) Transient receptor potential channels in cardiovascu lar function and disease. Circ. Res. 99, 119-131. https://doi.org/10.1161/01.RES.0000233356.10630.8a
- Iwasaki, Y. K., Nishida, K., Kato, T. and Nattel, S. (2011) Atrial fibrillation pathophysiology: implications for management. Circulation 124, 2264-2274. https://doi.org/10.1161/CIRCULATIONAHA.111.019893
- Kinoshita, H., Kuwahara, K., Nishida, M., Jian, Z., Rong, X., Kiyonaka, S., Kuwabara, Y., Kurose, H., Inoue, R., Mori, Y., Li, Y., Nakagawa, Y., Usami, S., Fujiwara, M., Yamada, Y., Minami, T., Ueshima, K. and Nakao, K. (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ. Res. 106, 1849-1860. https://doi.org/10.1161/CIRCRESAHA.109.208314
- Kiyonaka, S., Kato, K., Nishida, M., Mio, K., Numaga, T., Sawaguchi, Y., Yoshida, T., Wakamori, M., Mori, E., Numata, T., Ishii, M., Takemoto, H., Ojida, A., Watanabe, K., Uemura, A., Kurose, H., Morii, T., Kobayashi, T., Sato, Y., Sato, C., Hamachi, I. and Mori, Y. (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc. Natl. Acad. Sci. U.S.A. 106, 5400-5405. https://doi.org/10.1073/pnas.0808793106
- Koenig, S., Schernthaner, M., Maechler, H., Kappe, C. O., Glasnov, T. N., Hoefler, G., Braune, M., Wittchow, E. and Groschner, K. (2013) A TRPC3 blocker, ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-c arboxylate (Pyr3), prevents stentinduced arterial remodeling. J. Pharmacol. Exp. Ther. 344, 33-40. https://doi.org/10.1124/jpet.112.196832
-
Kuhr, F. K., Smith, K. A., Song, M. Y., Levitan, I. and Yuan, J. X. (2012) New mechanisms of pulmonary arterial hypertension: role of
$Ca^{2+}$ signaling. Am. J. Physiol. Heart Circ. Physiol. 302, H1546-H1562. https://doi.org/10.1152/ajpheart.00944.2011 - Kukkonen, J. P. (2011) A menage a trois made in heaven: G-proteincoupled receptors, lipids and TRP channels. Cell Calcium 50, 9-26. https://doi.org/10.1016/j.ceca.2011.04.005
- Kumar, B., Dreja, K., Shah, S. S., Cheong, A., Xu, S. Z., Sukumar, P., Naylor, J., Forte, A., Cipollaro, M., McHugh, D., Kingston, P. A., Heagerty, A. M., Munsch, C. M., Bergdahl, A., Hultgardh-Nilsson, A., Gomez, M. F., Porter, K. E., Hellstrand, P. and Beech, D. J. (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ. Res. 98, 557-563. https://doi.org/10.1161/01.RES.0000204724.29685.db
- Kuwahara, K., Wang, Y., McAnally, J., Richardson, J. A., Bassel-Duby, R., Hill, J. A. and Olson, E. N. (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest. 116, 3114-3126. https://doi.org/10.1172/JCI27702
- Kwan, H. Y., Huang, Y. and Yao, X. (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc. Natl. Acad. Sci. U.S.A. 101, 2625-2630. https://doi.org/10.1073/pnas.0304471101
- Leypold, B. G., Yu, C. R., Leinders-Zufall, T., Kim, M. M., Zufall, F. and Axel, R. (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc. Natl. Acad. Sci. U.S.A. 99, 6376-6381. https://doi.org/10.1073/pnas.082127599
-
Lin, M. J., Leung, G. P., Zhang, W. M., Yang, X. R., Yip, K. P., Tse, C. M. and Sham, J. S. (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated
$Ca^{2+}$ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ. Res. 95, 496-505. https://doi.org/10.1161/01.RES.0000138952.16382.ad - Lin, Y., Chen, F., Zhang, J., Wang, T., Wei, X., Wu, J., Feng, Y., Dai, Z. and Wu, Q. (2013) Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways. J. Mol. Neurosci. 50, 504-513. https://doi.org/10.1007/s12031-013-9977-8
- Liu, D., Maier, A., Scholze, A., Rauch, U., Boltzen, U., Zhao, Z., Zhu, Z. and Tepel, M. (2008) High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 28, 746-751. https://doi.org/10.1161/ATVBAHA.108.162222
- Liu, D., Scholze, A., Zhu, Z., Krueger, K., Thilo, F., Burkert, A., Streffer, K., Holz, S., Harteneck, C., Zidek, W. and Tepel, M. (2006) Transient receptor potential channels in essential hypertension. J. Hypertens. 24, 1105-1114. https://doi.org/10.1097/01.hjh.0000226201.73065.14
- Liu, D., Yang, D., He, H., Chen, X., Cao, T., Feng, X., Ma, L., Luo, Z., Wang, L., Yan, Z., Zhu, Z. and Tepel, M. (2009) Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53, 70-76. https://doi.org/10.1161/HYPERTENSIONAHA.108.116947
- Liu, D. Y., Scholze, A., Kreutz, R., Wehland-von-Trebra, M., Zidek, W., Zhu, Z. M. and Tepel, M. (2007a) Monocytes from spontaneously hypertensive rats show increased store-operated and second messenger-operated calcium influx mediated by transient receptor potential canonical Type 3 channels. Am. J. Hypertens. 20, 1111-1118. https://doi.org/10.1016/j.amjhyper.2007.04.004
- Liu, D. Y., Thilo, F., Scholze, A., Wittstock, A., Zhao, Z. G., Harteneck, C., Zidek, W., Zhu, Z. M. and Tepel, M. (2007b) Increased storeoperated and 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx in monocytes is mediated by transient receptor potential canonical channels in human essential hypertension. J. Hypertens. 25, 799-808. https://doi.org/10.1097/HJH.0b013e32803cae2b
- Liu, H., Yang, L., Chen, K. H., Sun, H. Y., Jin, M. W., Xiao, G. S., Wang, Y. and Li, G. R. (2016) SKF-96365 blocks human ether-ago-go-related gene potassium channels stably expressed in HEK 293 cells. Pharmacol. Res. 104, 61-69. https://doi.org/10.1016/j.phrs.2015.12.012
-
Liu, X. R., Zhang, M. F., Yang, N., Liu, Q., Wang, R. X., Cao, Y. N., Yang, X. R., Sham, J. S. and Lin, M. J. (2012) Enhanced storeoperated
$Ca^{2+}$ entry and TRPC channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am. J. Physiol., Cell Physiol. 302, C77-C87. https://doi.org/10.1152/ajpcell.00247.2011 - Loga, F., Domes, K., Freichel, M., Flockerzi, V., Dietrich, A., Birnbaumer, L., Hofmann, F. and Wegener, J. W. (2013) The role of cGMP/cGKI signalling and Trpc channels in regulation of vascular tone. Cardiovasc. Res. 100, 280-287. https://doi.org/10.1093/cvr/cvt176
- Lu, W., Ran, P., Zhang, D., Peng, G., Li, B., Zhong, N. and Wang, J. (2010) Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle. Am. J. Physiol., Cell Physiol. 298, C114-C123. https://doi.org/10.1152/ajpcell.00629.2008
-
Lu, W., Wang, J., Shimoda, L. A. and Sylvester, J. T. (2008) Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in
$Ca^{2+}$ responses to hypoxia. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L104-L113. https://doi.org/10.1152/ajplung.00058.2008 - Maier, T., Follmann, M., Hessler, G., Kleemann, H. W., Hachtel, S., Fuchs, B., Weissmann, N., Linz, W., Schmidt, T., Lohn, M., Schroeter, K., Wang, L., Rutten, H. and Strubing, C. (2015) Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. Br. J. Pharmacol. 172, 3650-3660. https://doi.org/10.1111/bph.13151
- Malczyk, M., Veith, C., Fuchs, B., Hofmann, K., Storch, U., Schermuly, R. T., Witzenrath, M., Ahlbrecht, K., Fecher-Trost, C., Flockerzi, V., Ghofrani, H. A., Grimminger, F., Seeger, W., Gudermann, T., Dietrich, A. and Weissmann, N. (2013) Classical transient receptor potential channel 1 in hypoxia-induced pulmonary hypertension. Am. J. Respir. Crit. Care Med. 188, 1451-1459. https://doi.org/10.1164/rccm.201307-1252OC
- Merritt, J. E., Armstrong, W. P., Benham, C. D., Hallam, T. J., Jacob, R., Jaxa-Chamiec, A., Leigh, B. K., McCarthy, S. A., Moores, K. E. and Rink, T. J. (1990) SK&F 96365, a novel inhibitor of receptormediated calcium entry. Biochem. J. 271, 515-522. https://doi.org/10.1042/bj2710515
-
Minke, B. (2006) TRP channels and
$Ca^{2+}$ signaling. Cell Calcium 40, 261-275. https://doi.org/10.1016/j.ceca.2006.05.002 - Montell, C. (2005) Drosophila TRP channels. Pflugers Arch. 451, 19-28. https://doi.org/10.1007/s00424-005-1426-2
- Montell, C., Birnbaumer, L., Flockerzi, V., Bindels, R. J., Bruford, E. A., Caterina, M. J., Clapham, D. E., Harteneck, C., Heller, S., Julius, D., Kojima, I., Mori, Y., Penner, R., Prawitt, D., Scharenberg, A. M., Schultz, G., Shimizu, N. and Zhu, M. X. (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 9, 229-231. https://doi.org/10.1016/S1097-2765(02)00448-3
- Nakashima, H. and Kumagai, K. (2007) Reverse-remodeling effects of angiotensin II type 1 receptor blocker in a canine atrial fibrillation model. Circ. J. 71, 1977-1982. https://doi.org/10.1253/circj.71.1977
- Nakayama, H., Wilkin, B. J., Bodi, I. and Molkentin, J. D. (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J. 20, 1660-1670. https://doi.org/10.1096/fj.05-5560com
- Nattel, S. (2011) From guidelines to bench: implications of unresolved clinical issues for basic investigations of atrial fibrillation mechanisms. Can. J. Cardiol. 27, 19-26. https://doi.org/10.1016/j.cjca.2010.11.004
-
Ng, L. C. and Gurney, A. M. (2001) Store-operated channels mediate
$Ca^{2+}$ influx and contraction in rat pulmonary artery. Circ. Res. 89, 923-929. https://doi.org/10.1161/hh2201.100315 - Nilius, B., Owsianik, G., Voets, T. and Peters, J. A. (2007) Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165-217. https://doi.org/10.1152/physrev.00021.2006
- Nilius, B. and Voets, T. (2005) TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch. 451, 1-10. https://doi.org/10.1007/s00424-005-1462-y
- Ohba, T., Watanabe, H., Murakami, M., Takahashi, Y., Iino, K., Kuromitsu, S., Mori, Y., Ono, K., Iijima, T. and Ito, H. (2007) Upregula tion of TRPC1 in the development of cardiac hypertrophy. J. Mol. Cell. Cardiol. 42, 498-507. https://doi.org/10.1016/j.yjmcc.2006.10.020
-
Ohga, K., Takezawa, R., Arakida, Y., Shimizu, Y. and Ishikawa, J. (2008) Characterization of YM-58483/BTP2, a novel store-operated
$Ca^{2+}$ entry blocker, on T cell-mediated immune responses in vivo. Int. Immunopharmacol. 8, 1787-1792. https://doi.org/10.1016/j.intimp.2008.08.016 -
Okada, T., Inoue, R., Yamazaki, K., Maeda, A., Kurosaki, T., Yamakuni, T., Tanaka, I., Shimizu, S., Ikenaka, K., Imoto, K. and Mori, Y. (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7.
$Ca^{2+}$ -permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J. Biol. Chem. 274, 27359-27370. https://doi.org/10.1074/jbc.274.39.27359 - Onohara, N., Nishida, M., Inoue, R., Kobayashi, H., Sumimoto, H., Sato, Y., Mori, Y., Nagao, T. and Kurose, H. (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 25, 5305-5316. https://doi.org/10.1038/sj.emboj.7601417
- Philipp, S., Wissenbach, U. and Flockerzi, V. (2000) Molecular biology of calcium channels. In Calcium Signaling (J. W. J. Putney, Ed.), pp. 321-342. CRC Press, Boca Raton.
- Piper, H. M., Abdallah, Y. and Schafer, C. (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc. Res. 61, 365-371. https://doi.org/10.1016/j.cardiores.2003.12.012
-
Plant, T. D. and Schaefer, M. (2003) TRPC4 and TRPC5: receptoroperated
$Ca^{2+}$ -permeable nonselective cation channels. Cell Calcium 33, 441-450. https://doi.org/10.1016/S0143-4160(03)00055-1 - Poteser, M., Graziani, A., Rosker, C., Eder, P., Derler, I., Kahr, H., Zhu, M. X., Romanin, C. and Groschner, K. (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J. Biol. Chem. 281, 13588-13595. https://doi.org/10.1074/jbc.M512205200
- Putney, J. W., Jr. (1986) A model for receptor-regulated calcium entry. Cell Calcium 7, 1-12. https://doi.org/10.1016/0143-4160(86)90026-6
- Riccio, A., Medhurst, A. D., Mattei, C., Kelsell, R. E., Calver, A. R., Randall, A. D., Benham, C. D. and Pangalos, M. N. (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res. Mol. Brain Res. 109, 95-104. https://doi.org/10.1016/S0169-328X(02)00527-2
- Rosenbaum, M. A., Chaudhuri, P. and Graham, L. M. (2015) Hypercholesterolemia inhibits re-endothelialization of arterial injuries by TRPC channel activation. J. Vasc. Surg. 62, 1040-1047.e2. https://doi.org/10.1016/j.jvs.2014.04.033
- Rowell, J., Koitabashi, N. and Kass, D. A. (2010) TRP-ing up heart and vessels: canonical transient receptor potential channels and cardiovascular disease. J. Cardiovasc. Transl. Res. 3, 516-524. https://doi.org/10.1007/s12265-010-9208-4
- Sabourin, J., Robin, E. and Raddatz, E. (2011) A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovasc. Res. 92, 226-236. https://doi.org/10.1093/cvr/cvr167
-
Satoh, S., Tanaka, H., Ueda, Y., Oyama, J., Sugano, M., Sumimoto, H., Mori, Y. and Makino, N. (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated
$Ca^{2+}$ channel mediating angiotensin II-induced myocardial apoptosis. Mol. Cell. Biochem. 294, 205-215. https://doi.org/10.1007/s11010-006-9261-0 - Schaefer, M., Plant, T. D., Obukhov, A. G., Hofmann, T., Gudermann, T. and Schultz, G. (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17517-17526. https://doi.org/10.1074/jbc.275.23.17517
-
Schleifer, H., Doleschal, B., Lichtenegger, M., Oppenrieder, R., Derler, I., Frischauf, I., Glasnov, T. N., Kappe, C. O., Romanin, C. and Groschner, K. (2012) Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated
$Ca^{2+}$ entry pathways. Br. J. Pharmacol. 167, 1712-1722. https://doi.org/10.1111/j.1476-5381.2012.02126.x - Seo, K., Rainer, P. P., Shalkey Hahn, V., Lee, D. I., Jo, S. H., Andersen, A., Liu, T., Xu, X., Willette, R. N., Lepore, J. J., Marino, J. P., Jr., Birnbaumer, L., Schnackenberg, C. G. and Kass, D. A. (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 111, 1551-1556. https://doi.org/10.1073/pnas.1308963111
- Seth, M., Zhang, Z. S., Mao, L., Graham, V., Burch, J., Stiber, J., Tsiokas, L., Winn, M., Abramowitz, J., Rockman, H. A., Birnbaumer, L. and Rosenberg, P. (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ. Res. 105, 1023-1030. https://doi.org/10.1161/CIRCRESAHA.109.206581
- Shan, D., Marchase, R. B. and Chatham, J. C. (2008) Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am. J. Physiol., Cell Physiol. 294, C833-C841. https://doi.org/10.1152/ajpcell.00313.2007
- Shaywitz, A. J. and Greenberg, M. E. (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821-861. https://doi.org/10.1146/annurev.biochem.68.1.821
-
Shi, J., Ju, M., Abramowitz, J., Large, W. A., Birnbaumer, L. and Albert, A. P. (2012) TRPC1 proteins confer PKC and phosphoinositol activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: comparative study of wild-type and
$Trpc1^{-/-}$ mice. FASEB J. 26, 409-419. https://doi.org/10.1096/fj.11-185611 - Shi, J., Miralles, F., Birnbaumer, L., Large, W. A. and Albert, A. P. (2016) Store depletion induces Galphaq-mediated PLCbeta1 activity to stimulate TRPC1 channels in vascular smooth muscle cells. FASEB J. 30, 702-715. https://doi.org/10.1096/fj.15-280271
-
Short, A. D., Bian, J., Ghosh, T. K., Waldron, R. T., Rybak, S. L. and Gill, D. L. (1993) Intracellular
$Ca^{2+}$ pool content is linked to control of cell growth. Proceedings of the National Academy of Sciences of the United States of America 90, 4986-4990. https://doi.org/10.1073/pnas.90.11.4986 -
Smedlund, K., Tano, J. Y. and Vazquez, G. (2010) The constitutive function of native TRPC3 channels modulates vascular cell adhesion molecule-1 expression in coronary endothelial cells through nuclear factor
${\kappa}B$ signaling. Circ. Res. 106, 1479-1488. https://doi.org/10.1161/CIRCRESAHA.109.213314 - Smedlund, K. and Vazquez, G. (2008) Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 2049-2055. https://doi.org/10.1161/ATVBAHA.108.175356
- Smedlund, K. B., Birnbaumer, L. and Vazquez, G. (2015) Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel. Proc. Natl. Acad. Sci. U.S.A. 112, E2201-E2206. https://doi.org/10.1073/pnas.1505410112
-
Soboloff, J., Spassova, M., Xu, W., He, L. P., Cuesta, N. and Gill, D. L. (2005) Role of endogenous TRPC6 channels in
$Ca^{2+}$ signal generation in A7r5 smooth muscle cells. J. Biol. Chem. 280, 39786-39794. https://doi.org/10.1074/jbc.M506064200 - Stowers, L., Holy, T. E., Meister, M., Dulac, C. and Koentges, G. (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493-1500. https://doi.org/10.1126/science.1069259
- Tabas, I., Tall, A. and Accili, D. (2010) The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression. Circ. Res. 106, 58-67. https://doi.org/10.1161/CIRCRESAHA.109.208488
- Tai, Y., Feng, S., Ge, R., Du, W., Zhang, X., He, Z. and Wang, Y. (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J. Cell Sci. 121, 2301-2307. https://doi.org/10.1242/jcs.026906
- Takahashi, S., Lin, H., Geshi, N., Mori, Y., Kawarabayashi, Y., Takami, N., Mori, M. X., Honda, A. and Inoue, R. (2008) Nitric oxide-cGMPprotein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J. Physiol. 586, 4209-4223. https://doi.org/10.1113/jphysiol.2008.156083
- Takahashi, Y., Watanabe, H., Murakami, M., Ohba, T., Radovanovic, M., Ono, K., Iijima, T. and Ito, H. (2007) Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis 195, 287-296. https://doi.org/10.1016/j.atherosclerosis.2006.12.033
- Tano, J. Y., Lee, R. H. and Vazquez, G. (2012) Macrophage function in atherosclerosis: potential roles of TRP channels. Channels (Austin) 6, 141-148. https://doi.org/10.4161/chan.20292
- Tauseef, M., Farazuddin, M., Sukriti, S., Rajput, C., Meyer, J. O., Ramasamy, S. K. and Mehta, D. (2016) Transient receptor potential channel 1 maintains adherens junction plasticity by suppressing sphingosine kinase 1 expression to induce endothelial hyperpermeability. FASEB J. 30, 102-110. https://doi.org/10.1096/fj.15-275891
- Thilo, F., Loddenkemper, C., Berg, E., Zidek, W. and Tepel, M. (2009) Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension. Mod. Pathol. 22, 426-430. https://doi.org/10.1038/modpathol.2008.200
-
Toth, P., Csiszar, A., Tucsek, Z., Sosnowska, D., Gautam, T., Koller, A., Schwartzman, M. L., Sonntag, W. E. and Ungvari, Z. (2013) Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressureinduced
$Ca^{2+}$ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am. J. Physiol. Heart Circ. Physiol. 305, H1698-H1708. https://doi.org/10.1152/ajpheart.00377.2013 - Venkatachalam, K., Zheng, F. and Gill, D. L. (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J. Biol. Chem. 278, 29031-29040. https://doi.org/10.1074/jbc.M302751200
- Wakili, R., Voigt, N., Kaab, S., Dobrev, D. and Nattel, S. (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J. Clin. Invest. 121, 2955-2968. https://doi.org/10.1172/JCI46315
- Wang, J., Fu, X., Yang, K., Jiang, Q., Chen, Y., Jia, J., Duan, X., Wang, E. W., He, J., Ran, P., Zhong, N., Semenza, G. L. and Lu, W. (2015) Hypoxia inducible factor-1-dependent up-regulation of BMP4 mediates hypoxia-induced increase of TRPC expression in PASMCs. Cardiovasc. Res. 107, 108-118. https://doi.org/10.1093/cvr/cvv122
- Wang, J., Jiang, Q., Wan, L., Yang, K., Zhang, Y., Chen, Y., Wang, E., Lai, N., Zhao, L., Jiang, H., Sun, Y., Zhong, N., Ran, P. and Lu, W. (2013a) Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. Am. J. Respir. Cell Mol. Biol. 48, 125-134. https://doi.org/10.1165/rcmb.2012-0071OC
-
Wang, J., Weigand, L., Lu, W., Sylvester, J. T., Semenza, G. L. and Shimoda, L. A. (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular
$Ca^{2+}$ in pulmonary arterial smooth muscle cells. Circ. Res. 98, 1528-1537. https://doi.org/10.1161/01.RES.0000227551.68124.98 - Wang, Z. T., Wang, Z. and Hu, Y. W. (2016) Possible roles of plateletderived microparticles in atherosclerosis. Atherosclerosis 248, 10-16. https://doi.org/10.1016/j.atherosclerosis.2016.03.004
- Weber, E. W., Han, F., Tauseef, M., Birnbaumer, L., Mehta, D. and Muller, W. A. (2015) TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. J. Exp. Med. 212, 1883-1899. https://doi.org/10.1084/jem.20150353
- Welsh, D. G., Morielli, A. D., Nelson, M. T. and Brayden, J. E. (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ. Res. 90, 248-250. https://doi.org/10.1161/hh0302.105662
- Winn, M. P., Conlon, P. J., Lynn, K. L., Farrington, M. K., Creazzo, T., Hawkins, A. F., Daskalakis, N., Kwan, S. Y., Ebersviller, S., Burchette, J. L., Pericak-Vance, M. A., Howell, D. N., Vance, J. M. and Rosenberg, P. B. (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801-1804. https://doi.org/10.1126/science.1106215
- Wu, X., Eder, P., Chang, B. and Molkentin, J. D. (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 107, 7000-7005. https://doi.org/10.1073/pnas.1001825107
- Wuensch, T., Thilo, F., Krueger, K., Scholze, A., Ristow, M. and Tepel, M. (2010) High glucose-induced oxidative stress increases transient receptor potential channel expression in human monocytes. Diabetes 59, 844-849. https://doi.org/10.2337/db09-1100
- Xia, Y., Yang, X. R., Fu, Z., Paudel, O., Abramowitz, J., Birnbaumer, L. and Sham, J. S. (2014) Classical transient receptor potential 1 and 6 contribute to hypoxic pulmonary hypertension through differential regulation of pulmonary vascular functions. Hypertension 63, 173-180. https://doi.org/10.1161/HYPERTENSIONAHA.113.01902
-
Xu, S. Z. and Beech, D. J. (2001) TrpC1 is a membrane-spanning subunit of store-operated
$Ca^{2+}$ channels in native vascular smooth muscle cells. Circ. Res. 88, 84-87. https://doi.org/10.1161/01.RES.88.1.84 - Yu, Y., Fantozzi, I., Remillard, C. V., Landsberg, J. W., Kunichika, N., Platoshyn, O., Tigno, D. D., Thistlethwaite, P. A., Rubin, L. J. and Yuan, J. X. (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc. Natl. Acad. Sci. U.S.A. 101, 13861-13866. https://doi.org/10.1073/pnas.0405908101
- Yue, Z., Xie, J., Yu, A. S., Stock, J., Du, J. and Yue, L. (2015) Role of TRP channels in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 308, H157-H182. https://doi.org/10.1152/ajpheart.00457.2014
- Zhang, S., Remillard, C. V., Fantozzi, I. and Yuan, J. X. (2004) ATPinduced mitogenesis is mediated by cyclic AMP response elementbinding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am. J. Physiol., Cell Physiol. 287, C1192-C1201. https://doi.org/10.1152/ajpcell.00158.2004
-
Zhang, Y., Lu, W., Yang, K., Xu, L., Lai, N., Tian, L., Jiang, Q., Duan, X., Chen, M. and Wang, J. (2013) Bone morphogenetic protein 2 decreases TRPC expression, store-operated
$Ca^{2+}$ entry, and basal [$Ca^{2+}$ ]i in rat distal pulmonary arterial smooth muscle cells. Am. J. Physiol., Cell Physiol. 304, C833-C843. https://doi.org/10.1152/ajpcell.00036.2012 -
Zhang, Y., Wang, Y., Yang, K., Tian, L., Fu, X., Wang, Y., Sun, Y., Jiang, Q., Lu, W. and Wang, J. (2014) BMP4 increases the expression of TRPC and basal [
$Ca^{2+}$ ]i via the p38MAPK and ERK1/2 pathways independent of BMPRII in PASMCs. PLoS ONE 9, e112695. https://doi.org/10.1371/journal.pone.0112695 - Zhu, D. Y., Lau, L., Liu, S. H., Wei, J. S. and Lu, Y. M. (2004) Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U.S.A. 101, 9453-9457. https://doi.org/10.1073/pnas.0401063101
- Zhu, X., Chu, P. B., Peyton, M. and Birnbaumer, L. (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett. 373, 193-198. https://doi.org/10.1016/0014-5793(95)01038-G
Cited by
- TRPC3 as a Target of Novel Therapeutic Interventions vol.7, pp.7, 2018, https://doi.org/10.3390/cells7070083
- Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease vol.7, pp.6, 2018, https://doi.org/10.3390/cells7060052
- Efficiency and Safety of CRAC Inhibitors in Human Rheumatoid Arthritis Xenograft Models vol.199, pp.5, 2017, https://doi.org/10.4049/jimmunol.1700192
- Sex Differences in Cardiovascular Risk Factors for Dementia vol.26, pp.6, 2017, https://doi.org/10.4062/biomolther.2018.159
- TRP Channels: Current Perspectives in the Adverse Cardiac Remodeling vol.10, pp.None, 2019, https://doi.org/10.3389/fphys.2019.00159
- Upregulation of Transient Receptor Potential Canonical Type 3 Channel via AT1R/TGF-β1/Smad2/3 Induces Atrial Fibrosis in Aging and Spontaneously Hypertensive Rats vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/4025496
- Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels vol.176, pp.7, 2017, https://doi.org/10.1111/bph.14578
- In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y12 receptor vol.64, pp.None, 2017, https://doi.org/10.1016/j.phymed.2019.152899
- TRPC3-Based Protein Signaling Complex as a Therapeutic Target of Myocardial Atrophy vol.13, pp.None, 2017, https://doi.org/10.2174/1874467213666200407090121
- The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes vol.14, pp.None, 2017, https://doi.org/10.3389/fncel.2020.601324
- MicroRNA-24-3p inhibition prevents cell growth of vascular smooth muscle cells by targeting Bcl-2-like protein 11 vol.19, pp.4, 2017, https://doi.org/10.3892/etm.2020.8517
- TRPC channels: Structure, function, regulation and recent advances in small molecular probes vol.209, pp.None, 2017, https://doi.org/10.1016/j.pharmthera.2020.107497
- Hsa_circ_0003204 Knockdown Weakens Ox-LDL-Induced Cell Injury by Regulating miR-188-3p/TRPC6 Axis in Human Carotid Artery Endothelial Cells and THP-1 Cells vol.8, pp.None, 2017, https://doi.org/10.3389/fcvm.2021.731890