DOI QR코드

DOI QR Code

In vitro study of the fracture resistance of monolithic lithium disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia for three-unit fixed dental prostheses

  • Choi, Jae-Won (Department of Prosthodontics, Dental Research Institute, Institute of Translation Dental Science, School of Dentistry, Pusan National University) ;
  • Kim, So-Yeun (Department of Prosthodontics, Pusan National University Hospital) ;
  • Bae, Ji-Hyeon (Department of Prosthodontics, Dental Research Institute, Institute of Translation Dental Science, School of Dentistry, Pusan National University) ;
  • Bae, Eun-Bin (Department of Prosthodontics, Dental Research Institute, Institute of Translation Dental Science, School of Dentistry, Pusan National University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, Dental Research Institute, Institute of Translation Dental Science, School of Dentistry, Pusan National University)
  • Received : 2016.10.04
  • Accepted : 2017.03.15
  • Published : 2017.08.31

Abstract

PURPOSE. The purpose of this study was to determine fracture resistance and failure modes of three-unit fixed dental prostheses (FDPs) made of lithium disilicate pressed on zirconia (LZ), monolithic lithium disilicate (ML), and monolithic zirconia (MZ). MATERIALS AND METHODS. Co-Cr alloy three-unit metal FDPs model with maxillary first premolar and first molar abutments was fabricated. Three different FDPs groups, LZ, ML, and MZ, were prepared (n = 5 per group). The three-unit FDPs designs were identical for all specimens and cemented with resin cement on the prepared metal model. The region of pontic in FDPs was given 50,000 times of cyclic preloading at 2 Hz via dental chewing simulator and received a static load until fracture with universal testing machine fixed at $10^{\circ}$. The fracture resistance and mode of failure were recorded. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test with Bonferroni's correction (${\alpha}=0.05/3=0.017$). RESULTS. A significant difference in fracture resistance was found between LZ ($4943.87{\pm}1243.70N$) and ML ($2872.61{\pm}658.78N$) groups, as well as between ML and MZ ($4948.02{\pm}974.51N$) groups (P<.05), but no significant difference was found between LZ and MZ groups (P>.05). With regard to fracture pattern, there were three cases of veneer chipping and two interfacial fractures in LZ group, and complete fracture was observed in all the specimens of ML and MZ groups. CONCLUSION. Compared to monolithic lithium disilicate FDPs, monolithic zirconia FDPs and lithium disilicate glass ceramics pressed on zirconia-based FDPs showed superior fracture resistance while they manifested comparable fracture resistances.

Keywords

References

  1. Luthy H, Filser F, Loeffel O, Schumacher M, Gauckler LJ, Hammerle CH. Strength and reliability of four-unit all-ceramic posterior bridges. Dent Mater 2005;21:930-7. https://doi.org/10.1016/j.dental.2004.11.012
  2. Datla SR, Alla RK, Alluri VR, Babu JP, Konakanchi A. Dental ceramics: Part II - Recent advances in dental ceramics. Am J Mater Eng Technol 2015;3:19-26.
  3. Venclikova Z, Benada O, Bartova J, Joska L, Mrklas L. Metallic pigmentation of human teeth and gingiva: morphological and immunological aspects. Dent Mater J 2007;26:96-104. https://doi.org/10.4012/dmj.26.96
  4. Donovan TE. Factors essential for successful all-ceramic restorations. J Am Dent Assoc 2008;139:14S-8S.
  5. Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20:383-8.
  6. Schultheis S, Strub JR, Gerds TA, Guess PC. Monolithic and bi-layer CAD/CAM lithium-disilicate versus metal-ceramic fixed dental prostheses: comparison of fracture loads and failure modes after fatigue. Clin Oral Investig 2013;17:1407-13. https://doi.org/10.1007/s00784-012-0830-1
  7. Rekow ED, Silva NR, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics: challenges for improvements. J Dent Res 2011;90:937-52. https://doi.org/10.1177/0022034510391795
  8. Kim HK, Kim SH. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent Mater 2014;30:e229-37. https://doi.org/10.1016/j.dental.2014.04.008
  9. Takeichi T, Katsoulis J, Blatz MB. Clinical outcome of single porcelain-fused-to-zirconium dioxide crowns: a systematic review. J Prosthet Dent 2013;110:455-61. https://doi.org/10.1016/j.prosdent.2013.09.015
  10. Sailer I, Gottnerb J, Kanelb S, Hammerle CH. Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic posterior fixed dental prostheses: a 3-year follow-up. Int J Prosthodont 2009;22:553-60.
  11. Silva NR, Bonfante EA, Rafferty BT, Zavanelli RA, Rekow ED, Thompson VP, Coelho PG. Modified Y-TZP core design improves all-ceramic crown reliability. J Dent Res 2011;90:104-8. https://doi.org/10.1177/0022034510384617
  12. Baltzer A. All-ceramic single-tooth restorations: choosing the material to match the preparation-preparing the tooth to match the material. Int J Comput Dent 2008;11:241-56.
  13. Schmitter M, Schweiger M, Mueller D, Rues S. Effect on in vitro fracture resistance of the technique used to attach lithium disilicate ceramic veneer to zirconia frameworks. Dent Mater 2014;30:122-30. https://doi.org/10.1016/j.dental.2013.10.008
  14. Kim SY, Choi JW, Ju SW, Ahn JS, Yoon MJ, Huh JB. Fracture strength after fatigue loading of lithium disilicate pressed zirconia crowns. Int J Prosthodont 2016;29:369-71. https://doi.org/10.11607/ijp.4602
  15. Guess PC, Zhang Y, Thompson VP. Effect of veneering techniques on damage and reliability of Y-TZP trilayers. Eur J Esthet Dent 2009;4:262-76.
  16. Ambre MJ, Aschan F, Vult von Steyern P. Fracture strength of yttria-stabilized zirconium-dioxide (Y-TZP) fixed dental prostheses (FPDs) with different abutment core thicknesses and connector dimensions. J Prosthodont 2013;22:377-82. https://doi.org/10.1111/jopr.12003
  17. Wimmer T, Erdelt KJ, Eichberger M, Roos M, Edelhoff D, Stawarczyk B. Influence of abutment model materials on the fracture loads of three-unit fixed dental prostheses. Dent Mater J 2014;33:717-24. https://doi.org/10.4012/dmj.2013-344
  18. Nawafleh N, Hatamleh M, Elshiyab S, Mack F. Lithium disilicate restorations fatigue testing parameters: A systematic review. J Prosthodont 2016;25:116-26. https://doi.org/10.1111/jopr.12376
  19. Kelly JR. Clinically relevant approach to failure testing of allceramic restorations. J Prosthet Dent 1999;81:652-61. https://doi.org/10.1016/S0022-3913(99)70103-4
  20. Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont 1995;8:105-16.
  21. Zhang L, Wang Z, Chen J, Zhou W, Zhang S. Probabilistic fatigue analysis of all-ceramic crowns based on the finite element method. J Biomech 2010;43:2321-6. https://doi.org/10.1016/j.jbiomech.2010.04.030
  22. Beuer F, Steff B, Naumann M, Sorensen JA. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur J Oral Sci 2008;116:381-6. https://doi.org/10.1111/j.1600-0722.2008.00551.x
  23. McLaren EA, Giordano RA. Zirconia-based ceramics: Material properties, esthetics, and layering techniques of a new veneering porcelain, VM9. Quintessence Dent Technol 2005;28:99-112.
  24. Preis V, Weiser F, Handel G, Rosentritt M. Wear performance of monolithic dental ceramics with different surface treatments. Quintessence Int 2013;44:393-405.
  25. DeLong R. Intra-oral restorative materials wear: rethinking the current approaches: how to measure wear. Dent Mater 2006;22:702-11. https://doi.org/10.1016/j.dental.2006.02.003
  26. Woda A, Mishellany A, Peyron MA. The regulation of masticatory function and food bolus formation. J Oral Rehabil 2006;33:840-9. https://doi.org/10.1111/j.1365-2842.2006.01626.x
  27. Rees JS. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies. J Oral Rehabil 2001;28:425-32. https://doi.org/10.1046/j.1365-2842.2001.00686.x
  28. Cho L, Song H, Koak J, Heo S. Marginal accuracy and fracture strength of ceromer/fiber-reinforced composite crowns: effect of variations in preparation design. J Prosthet Dent 2002;88:388-95. https://doi.org/10.1067/mpr.2002.128378
  29. Rosentritt M, Naumann M, Hahnel S, Handel G, Reill M. Evaluation of tooth analogs and type of restoration on the fracture resistance of post and core restored incisors. J Biomed Mater Res B Appl Biomater 2009;91:272-6.
  30. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study. Int J Prosthodont 2001;14:231-8.
  31. Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993;6:462-7.
  32. Potiket N, Chiche G, Finger IM. In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent 2004;92:491-5. https://doi.org/10.1016/j.prosdent.2004.09.001
  33. Bindl A, Luthy H, Mormann WH. Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dent Mater 2006;22:29-36. https://doi.org/10.1016/j.dental.2005.02.007
  34. Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation parameters on the fracture strength of allceramic fixed-partial dentures. Dent Mater 2006;22:176-82. https://doi.org/10.1016/j.dental.2005.04.024
  35. Sorensen JA, Choi C, Fanuscu MI, Mito WT. IPS Empress crown system: three-year clinical trial results. J Calif Dent Assoc 1998;26:130-6.
  36. Clausen JO, Abou Tara M, Kern M. Dynamic fatigue and fracture resistance of non-retentive all-ceramic full-coverage molar restorations. Influence of ceramic material and preparation design. Dent Mater 2010;26:533-8. https://doi.org/10.1016/j.dental.2010.01.011
  37. Della Bona A, Mecholsky JJ Jr, Anusavice KJ. Fracture behavior of lithia disilicate- and leucite-based ceramics. Dent Mater 2004;20:956-62. https://doi.org/10.1016/j.dental.2004.02.004
  38. Apel E, Deubener J, Bernard A, Holand M, Muller R, Kappert H, Rheinberger V, Holand W. Phenomena and mechanisms of crack propagation in glass-ceramics. J Mech Behav Biomed Mater 2008;1:313-25. https://doi.org/10.1016/j.jmbbm.2007.11.005
  39. Rodriguez V, Castillo-Oyague R, Lopez-Suarez C, Gonzalo E, Pelaez J, Suarez-Garcia MJ. Fracture load before and after veneering zirconia posterior fixed dental prostheses. J Prosthodont 2016;25:550-6. https://doi.org/10.1111/jopr.12357
  40. Garvie RC, Hannink RH, Passcoe RT. Ceramic Steel? Nature 1975;258:703-4. https://doi.org/10.1038/258703a0
  41. Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina-advanced technologies for the manufacturing of single crowns. Eur J Prosthodont Restor Dent 1999;7:113-9.
  42. Weyhrauch M, Igiel C, Scheller H, Weibrich G, Lehmann KM. Fracture strength of monolithic all-ceramic crowns on titanium implant abutments. Int J Oral Maxillofac Implants 2016;31:304-9.
  43. Belli R, Petschelt A, Hofner B, Hajto J, Scherrer SS, Lohbauer U. Fracture rates and lifetime estimations of CAD/CAM allceramic restorations. J Dent Res 2016;95:67-73. https://doi.org/10.1177/0022034515608187
  44. Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont 2010;23:434-42.

Cited by

  1. Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown vol.11, pp.1, 2018, https://doi.org/10.3390/ma11010077
  2. A Comparative Study of the Fitness and Trueness of a Three-Unit Fixed Dental Prosthesis Fabricated Using Two Digital Workflows vol.9, pp.14, 2017, https://doi.org/10.3390/app9142778
  3. Current status on lithium disilicate and zirconia: a narrative review vol.19, pp.1, 2017, https://doi.org/10.1186/s12903-019-0838-x
  4. Effect of ceramic material type on the fracture load of inlay-retained and full-coverage fixed dental prostheses vol.7, pp.1, 2017, https://doi.org/10.1080/26415275.2020.1744443
  5. Fracture load of three-unit full-contour fixed dental prostheses fabricated with subtractive and additive CAD/CAM technology vol.24, pp.2, 2020, https://doi.org/10.1007/s00784-019-03000-0
  6. Effect of core design on fracture resistance of zirconia-lithium disilicate anterior bilayered crowns vol.12, pp.4, 2020, https://doi.org/10.4047/jap.2020.12.4.181
  7. In Vitro Fatigue and Fracture Load of Monolithic Ceramic Crowns Supported by Hybrid Abutment vol.15, pp.1, 2017, https://doi.org/10.2174/1874210602115010664
  8. Ceramics in dentistry: which material is appropriate for the anterior or posterior Dentition? Part 1: materials science vol.48, pp.8, 2021, https://doi.org/10.12968/denu.2021.48.8.680
  9. Evaluation of Marginal/Internal Fit and Fracture Load of Monolithic Zirconia and Zirconia Lithium Silicate (ZLS) CAD/CAM Crown Systems vol.14, pp.21, 2017, https://doi.org/10.3390/ma14216346