DOI QR코드

DOI QR Code

Failure Function of Transversely Isotropic Rock Based on Cassini Oval

Cassini 난형곡선을 활용한 횡등방성 암석 파괴함수

  • Lee, Youn-Kyou (Department of Coastal Construction Engineering, Kunsan National University)
  • Received : 2017.08.06
  • Accepted : 2017.08.18
  • Published : 2017.08.31

Abstract

Since the failure behavior of transversely isotropic rocks is significantly different from that of isotropic rocks, it is necessary to develop a transversely isotropic rock failure function in order to evaluate the stability of rock structures constructed in transversely isotropic rock masses. In this study, a spatial distribution function for strength parameters of transversely isotropic rocks is proposed, which is based on the Cassini oval curve proposed by 17th century astronomer Giovanni Domenico Cassini to model the orbit of the Sun around the Earth. The proposed distribution function consists of two model parameters which could be identified through triaxial compression tests on transversely isotropic rock samples. The original Mohr-Coulomb (M-C) failure function is extended to a three-dimensional transversely isotropic M-C failure function by employing the proposed strength parameter distribution function for the spatial distributions of the friction angle and cohesion. In order to verify the suitability of the transversely isotropic M-C failure function, both the conventional triaxial compression and true triaxial compression tests of transversely isotropic rock samples are simulated. The predicted results from the numerical experiments are consistent with the failure behavior of transversely isotropic rocks observed in the actual laboratory tests. In addition, the simulated result of true triaxial compression tests hints that the dependence of rock strength on intermediate principal stress may be closely related to the distribution of the microstructures included in the rock samples.

횡등방성 암석의 파괴거동은 등방성 암석의 경우와 큰 차이가 있으므로 횡등방성 암반에 건설되는 암반구조물의 정밀한 안정성 평가를 위해서는 횡등방 파괴함수의 개발이 필요하다. 이 연구에서는 17세기 천문학자 Cassini가 지구둘레를 도는 태양의 궤도를 모델링하기 위해 제안한 Cassini 난형(卵形)곡선을 기반으로 횡등방성 암석의 강도정수 분포함수를 제안하였다. 제안된 강도정수 분포함수는 횡등방성 암석시료에 대한 삼축압축시험을 통해 실험적으로 결정이 가능한 2개의 모델 파라미터로 정의된다. 제안된 강도정수 분포함수를 마찰각과 점착력의 공간분포함수로 채용하여 기존의 Mohr-Coulomb(M-C) 파괴함수를 3차원 횡등방성 M-C 파괴함수로 확장시켰다. 제안된 횡등방성 M-C 파괴함수의 적합성을 검증하기 위해 횡등방성 암석시료의 삼축압축시험 및 진삼축압축시험을 수치모사하였다. 수치실험을 통해 예측된 결과는 실제 실험실 시험에서 관찰되는 횡등방성 암석의 파괴거동과 부합하였다. 또한 진삼축압축시험 수치모사 결과는 암석강도의 중간주응력 의존성이 암석시료에 포함된 미시적 연약면의 공간분포 특성과 밀접한 관련이 있을 수 있음을 보여주었다.

Keywords

References

  1. Attewell, P.B. and M.R. Sandford, 1974, Intrinsic shear strength of a brittle, anisotropic rock - I experimental and mechanical interpretation, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 11, 423-430. https://doi.org/10.1016/0148-9062(74)90453-7
  2. Choi, M.J. and H.S. Yang, 2005, Anisotropic analysis of tunnel in transversely isotropic rock, Tunnel & Underground Space, Korean Society for Rock Mechanics, 15, 391-399.
  3. Donath, F.A., 1961, Experimental study of shear failure in anisotropic rocks, GSA Bull., 72(6), 985-989. https://doi.org/10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2
  4. Donath, F.A., 1964, Strength variation and deformational behavior in anisotropic rock. In "State of stress in the Earth's crust", W.R. Judd Ed., New York, Elsevier, 281-298.
  5. Duveau, G., J.F. Shao and J.P. Henry, 1998, Assessment of some failure criteria for strongly anisotropic geomaterials, Mech. Cohesive-Frictional Mat., 3, 1-26. https://doi.org/10.1002/(SICI)1099-1484(199801)3:1<1::AID-CFM38>3.0.CO;2-7
  6. Ingraham, M.D., K.A. Issen and D.J. Holocomb, 2013, Response of Castlegate sandstone to true triaxial states of stress, J. Geophys. Res. Solid Earth, 118, 536-552. https://doi.org/10.1002/jgrb.50084
  7. Jaeger, J.C., 1960, Shear failure of anisotropic rocks, Geol. Mag., 97, 65-72. https://doi.org/10.1017/S0016756800061100
  8. Jung, J., C. Heo and S. Jeon, 2013, Study on hydraulic fracturing in transversely isotropic rock using bonded particle model, Tunnel & Underground Space, Korean Society for Rock Mechanics, 23, 470-479. https://doi.org/10.7474/TUS.2013.23.6.470
  9. Kwasniewski, M., 1993, Mechanical behavior of anisotropic rocks, In "Compressive rock engineering", J.A. Hudson Ed., Oxford, Pergamon, 1, 285-312.
  10. Lee, Y.K., 2007, Prediction of strength for transversely isotropic rock based on critical plane approach, Tunnel & Underground Space, Korean Society for Rock Mechanics, 17, 119-27.
  11. Lee, Y.K. and S. Pietruszczak, 2008, Applicaiton of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses, Int. J. Rock Mech. & Min. Sci., 45, 513-523. https://doi.org/10.1016/j.ijrmms.2007.07.017
  12. Lee, Y.K. and B.H. Choi, 2011, Anisotropic version of Mohr-Coulomb failure criterion for transversely isotropic rock, Tunnel & Underground Space, Korean Society for Rock Mechanics, 21, 174-180.
  13. Lee, Y.K., 2013, Intermediate principal stress dependency in strength of transversely isotropic Mohr-Coulomb rock, Tunnel & Underground Space, Korean Society for Rock Mechanics, 23, 383-391. https://doi.org/10.7474/TUS.2013.23.5.383
  14. Lee, Y.K., 2015, Simulation of polyaxial tests using a failure condition for transversely isotropic rocks, Geosystem Engineering, 18, 29-37. https://doi.org/10.1080/12269328.2014.997893
  15. Lee, Y.K., 2016, Spatial distribution functions of strength parameters for simulation of strength anisotropy in transversely isotropic rock, Tunnel & Underground Space, Korean Society for Rock Mechanics, 26, 100-109. https://doi.org/10.7474/TUS.2016.26.2.100
  16. Ma, X. and B.C. Haimson, 2016, Failure characteristics of two porous sandstones subjected to true triaxial stresses, J. Geophys. Res. Solid Earth, 121, 6477-6498. https://doi.org/10.1002/2016JB012979
  17. Mogi, K., 2007, Experimental rock mechancis, pp.361, Balkema, London.
  18. Park, C.W., C. Park, Y.B. Jung and E.S. Park, 2010, Application of suggested equations to determine the elastic constants of a transversely isotropic rock from single specimen, Tunnel & Underground Space, Korean Society for Rock Mechanics, 20, 153-168.
  19. Park, C.W., C. Park and Y.B. Jung, 2012, Experimental study on the elastic constants of a transversely isotropic rock by multi-specimen compression tests, Tunnel & Underground Space, Korean Society for Rock Mechanics, 22, 346-353. https://doi.org/10.7474/TUS.2012.22.5.346
  20. Park, C.W., C. Park, J.W. Park and Y.B. Jung, 2016, Mathematical understanding of the Saint-Venant approximation in analysis of a transversely isotropy, Tunnel & Underground Space, Korean Society for Rock Mechanics, 26, 363-374. https://doi.org/10.7474/TUS.2016.26.5.363
  21. Pietruszczak, S. and Z. Mroz, 2001, On failure criteria for anisotropic cohesive-frictional materials, Int. J. Numer. Anal. Meth. Geomech., 25, 509-524. https://doi.org/10.1002/nag.141
  22. Ramamurthy, T., 1993, Strength and modulus responses of anisotropic rocks, In "Compressive rock engineering", J.A. Hudson Ed., Oxford, Pergamon, 1, 313-329.
  23. Saroglou, H. and G. Tsiambaos, 2008, A modified Hoek-Brown failure criterion for anisotropic intact rock, Int. J. Rock Mech. & Min. Sci., 45, 223-234. https://doi.org/10.1016/j.ijrmms.2007.05.004
  24. Weisstein, E.W., 2005, "Cassini ovals", From MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/CassiniOvals.html