DOI QR코드

DOI QR Code

The Doi-Edwards Constitutive Equation to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids

Doi-Edwards 구성방정식을 사용한 점탄성 고분자 액체의 대진폭 전단유동거동 예측

  • Ahn, Hye-Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Chang, Gap-Shik (Industrial Materials and Component Business Team, FITI Testing & Research Institute) ;
  • Song, Ki-Won (Department of Organic Material Science and Engineering, Pusan National University)
  • 안혜진 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 장갑식 (FITI 시험연구원 부품소재사업팀) ;
  • 송기원 (부산대학교 공과대학 유기소재시스템공학과)
  • Received : 2017.07.11
  • Accepted : 2017.08.06
  • Published : 2017.08.31

Abstract

The present study has been designed to predict the nonlinear viscoelastic behavior of concentrated polymer systems in large amplitude oscillatory shear (LAOS) flow fields by means of the Doi-Edwards constitutive equation. Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous poly (ethylene oxide) (PEO) solutions with various molecular weights and different concentrations has been investigated with a various combination of several fixed strain amplitudes and constant angular frequencies. The linear dynamic data (storage modulus and loss modulus) over a wide range of angular frequencies were also obtained to determine the relaxation spectrum parameters. The experimentally obtained Lissajous patterns (stress-strain rate hysteresis loops) were compared with the Doi-Edwards model predictions over a wide range of strain amplitudes and angular frequencies for all polymer solutions prepared in this work. The nonlinear viscoelastic functions were analyzed by the aid of 3D plots and predicted over a wide range of strain amplitudes to evaluate the overall predictability of the Doi-Edwards model. The main findings obtained from this study are summarized as follows : (1) The Lissajous patterns predicted by the Doi-Edwards model represent a good agreement with the experimentally obtained stress-strain rate hysteresis loops both in linear and nonlinear viscoelastic regions. (2) The predictions of the Doi-Edwards model are closely coincident with the experimental results in the linear viscoelastic region. As the strain amplitude is increased, the predicted nonlinear viscoelastic functions are somewhat larger than that of the experimental data. Nevertheless, all trends of the nonlinear viscoelastic behavior are qualitatively in good agreement with the experimental results. (3) The Doi-Edwards model gives a very good prediction for the first harmonic storage modulus and loss modulus up to the nonlinear viscoelastic region. The third and fifth harmonic storage and loss moduli exhibit an overshoot or an undershoot at large strain amplitudes. This constitutive equation can describe well such excessive behavioral changes in a qualitative sense. (4) The Doi-Edwards model has a slightly better ability than the Wagner model to predict the LAOS flow behavior of concentrated polymer systems.

Keywords

References

  1. K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, "Rheological Characterization of Aqueous Poly(ethylene oxide) Solutions (I) : Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation", J. Kor. Fiber Soc., 1996, 33, 1083-1093.
  2. H. J. Ahn, H. Y. Kuk, J. S. Lee, and K. W. Song, "Nonlinear Viscoelastic Behavior of Concentrated Xanthan Gum Systems in Large Amplitude Oscillatory Shear (LAOS) Flow Fields : Stress Waveform and Lissajous Pattern Analysis", Text. Sci. Eng., 2016, 53, 328-339. https://doi.org/10.12772/TSE.2016.53.328
  3. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of PEO-PPOPEO Triblock Copolymer Solutions", Rheol. Acta, 2006, 45, 239-249. https://doi.org/10.1007/s00397-005-0014-x
  4. K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63. https://doi.org/10.1122/1.3258278
  5. K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids", J. Non-Newt. Fluid Mech., 2002, 107, 51-65. https://doi.org/10.1016/S0377-0257(02)00141-6
  6. X. Li, S. Q. Wang, and X. Wang, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials", J. Rheol., 2009, 53, 1255-1274. https://doi.org/10.1122/1.3193713
  7. K. S. Cho, J. W. Kim, J. E. Bae, J. H. Youk, H. J. Jeon, and K. W. Song, "Effect of Temporary Network Structure on Linear and Nonlinear Viscoelasticity of Polymer Solutions", Korea-Aust. Rheol. J., 2015, 27, 151-161. https://doi.org/10.1007/s13367-015-0015-y
  8. K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183.
  9. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758. https://doi.org/10.1122/1.1895801
  10. R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, "New Measures for Characterizing Nonlinear Viscoelasticity in Large Amplitude Oscillatory Shear", J. Rheol., 2008, 52, 1427-1458. https://doi.org/10.1122/1.2970095
  11. S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25. https://doi.org/10.1122/1.3662962
  12. J. E. Bae and K. S. Cho, "Semianalytical Methods for the Determination of the Nonlinear Parameter of Nonlinear Viscoelastic Constitutive Equations from LAOS Data", J. Rheol., 2015, 59, 525-555. https://doi.org/10.1122/1.4907976
  13. B. Debbaut and H. Burhin, "Large Amplitude Oscillatory Shear and Fourier-Transform Rheology for a High-Density Polyethylene : Experiments and Numerical Simulation", J. Rheol., 2002, 46, 1155-1176. https://doi.org/10.1122/1.1495493
  14. S. H. Kim, H. G. Sim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of the Network Model for Associating Polymeric Systems", Korea-Aust. Rheol. J., 2002, 14, 49-55.
  15. K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions : Oscillatory Shear Flow Behavior", Korea-Aust. Rheol. J., 2006, 18, 67-81.
  16. G. S. Chang, "Large Amplitude Oscillatory Shear Flow Behavior of Viscoelastic Polymer Solutions", Ph.D. Thesis, Pusan National University, Busan, Korea, 2010.
  17. L. H. Gross and B. Maxwell, "The Limit of Linear Viscoelastic Response in Polymer Melts as Measured in the Maxwell Orthogonal Rheometer", Trans. Soc. Rheol., 1972, 16, 577-601. https://doi.org/10.1122/1.549282
  18. R. J. Gordon and W. R. Schowalter, "On the Relation between Complex Viscosity and Steady State Shearing in the Maxwell Orthogonal Rheometer", AIChE J., 1970, 16, 318-320. https://doi.org/10.1002/aic.690160229
  19. R. I. Tanner, "Network Rupture and the Flow of Concentrated Polymer Solutions", AIChE J., 1969, 15, 177-183. https://doi.org/10.1002/aic.690150210
  20. I. F. MacDonald, "Large Amplitude Oscillatory Shear Flow of Viscoelastic Materials", Rheol. Acta, 1975, 14, 801-811. https://doi.org/10.1007/BF01521409
  21. I. F. MacDonald, "Rate-Dependent Viscoelastic Models (II) The MBC Model : An Experimental Assessment", Rheol. Acta, 1975, 14, 906-918. https://doi.org/10.1007/BF01515891
  22. P. J. Carreau, "Rheological Equations from Molecular Network Theories", Trans. Soc. Rheol., 1972, 16, 99-128. https://doi.org/10.1122/1.549276
  23. R. B. Bird and P. J. Carreau, "A Nonlinear Viscoelastic Model for Polymer Solutions and Melts - I", Chem. Eng. Sci., 1968, 23, 427-434. https://doi.org/10.1016/0009-2509(68)87018-6
  24. I. F. MacDonald, "Rate-Dependent Viscoelastic Models (I) Experimental Results as Guidelines in Selecting the Memory Function", Rheol. Acta, 1975, 14, 899-905. https://doi.org/10.1007/BF01515890
  25. I. F. MacDonald, B. D. Marsh, and E. Ashare, "Rheological Behavior for Large Amplitude Oscillatory Motion", Chem. Eng. Sci., 1969, 24, 1615-1625. https://doi.org/10.1016/0009-2509(69)80101-6
  26. H. C. Yen and L. V. McIntire, "Finite Amplitude Dynamic Motion of Viscoelastic Materials", Trans. Soc. Rheol., 1972, 16, 711-726. https://doi.org/10.1122/1.549272
  27. A. Kaye, "Non-Newtonian Flow in Incompressible Fluids", Note No.134, College of Aeronautics, Cranford, UK, 1962.
  28. B. Bernstein, E. A. Kearsley, and L. J. Zapas, "A Study of Stress Relaxation with Finite Strain", Trans. Soc. Rheol., 1963, 7, 391-410. https://doi.org/10.1122/1.548963
  29. M. H. Wagner, "Analysis of Time-Dependent Nonlinear Stress Growth Data for Shear and Elongational Flow of a Low-Density Branched Polyethylene Melt", Rheol. Acta, 1976, 15, 136-142. https://doi.org/10.1007/BF01517505
  30. A. S. Lodge, "Elastic Liquids", Academic Press, New York, 1964.
  31. A. J. Giacomin, R. S. Jeyaseelan, T. Samurkas, and J. M. Dealy, "Validity of Separable BKZ Model for Large Amplitude Oscillatory Shear", J. Rheol., 1993, 37, 811-826. https://doi.org/10.1122/1.550396
  32. M. J. Reimers and J. M. Dealy, "Sliding Plate Rheometer Studies of Concentrated Polystyrene Solutions : Large Amplitude Oscillatory Shear of a Very High Molecular Weight Polymer in Diethyl Phthalate", J.Rheol., 1996, 40, 167-186. https://doi.org/10.1122/1.550738
  33. M. Doi and S. F. Edwards, "The Theory of Polymer Dynamics", Oxford University Press, Oxford, 1986.
  34. D. S. Pearson and W. E. Rochefort, "Behavior of Concentrated Polystyrene Solutions in Large-Amplitude Oscillating Shear Fields", J. Polym. Sci. : Polym. Phys. Ed., 1982, 20, 83-98. https://doi.org/10.1002/pol.1982.180200107
  35. M. J. Reimers and J. M. Dealy, "Sliding Plate Rheometer Studies of Concentrated Polystyrene Solutions : Nonlinear Viscoelasticity and Wall Slip of Two High Molecular Weight Polymers in Tricresyl Phosphate", J. Rheol.,1998, 42, 527-548. https://doi.org/10.1122/1.550958
  36. G. Marrucci, G. Titomanlio, and G. C. Sarti, "Testing of a Constitutive Equation for Entangled Networks by Elongational and Shear Data of Polymer Melts", Rheol. Acta, 1973, 12, 269-275. https://doi.org/10.1007/BF01635115
  37. R. B. Bird, R. C. Armstrong, and O. Hassager, "Dynamics of Polymeric Liquids Vol. 1: Fluid Mechanics", 2nd Ed., John Wiley and Sons, New York, 1987.
  38. J. A. Yosick, A. J. Giacomin, and P. Moldenaers, "A Kinetic Network Model for Nonlinear Flow Behavior of Molten Plastics in Both Shear and Extension", J. Non-Newt. Fluid Mech., 1997, 70, 103-123. https://doi.org/10.1016/S0377-0257(96)01535-2
  39. J. Mewis and M. M. Denn, "Constitutive Equations Based on the Transient Network Concept", J. Non-Newt. Fluid Mech., 1983, 12, 69-83. https://doi.org/10.1016/0377-0257(83)80005-6
  40. T. Y. Liu, D. S. Soong, and M. C. Williams, "Transient and Steady Rheology of Polydisperse Entangled Melts : Predictions of a Kinetic Network Model and Data Comparisons", J. Polym. Sci. : Polym. Phys. Ed., 1984, 22, 1561-1587. https://doi.org/10.1002/pol.1984.180220902
  41. R. S. Jeyaseelan, A. J. Giacomin, and J. G. Oakley, "Simplification of Network Theory for Polymer Melts in Nonlinear Oscillatory Shear", AIChE J., 1993, 39, 846-854. https://doi.org/10.1002/aic.690390513
  42. W. K. W. Tsang and J. M. Dealy, "The Use of Large Transient Deformations to Evaluate Rheological Models for Molten Polymers", J. Non-Newt. Fluid Mech., 1981, 9, 203-222. https://doi.org/10.1016/0377-0257(81)85001-X
  43. A. T. Tsai and D. S. Soong, "Measurement of Fast Transient and Steady-State Responses of Viscoelastic Fluids with a Sliding Cylinder Rheometer Executing Coaxial Displacements", J. Rheol., 1985, 29, 1-18. https://doi.org/10.1122/1.549783
  44. A. J. Giacomin and J. G. Oakley, "Obtaining Fourier Series Graphically from Large Amplitude Oscillatory Shear Loops", Rheol. Acta, 1993, 32, 328-332. https://doi.org/10.1007/BF00434197
  45. K. W. Song, S. H. Ye, and G. S. Chang, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (IV) : Nonlinear Stress Relaxation in Single-Step Large Shear Deformations", J. Kor. Fiber Soc., 1999, 36, 383-395.
  46. R. S. Jeyaseelan and A. J. Giacomin, "Structural Network Theory for a Filled Polymer Melt in Large Amplitude Oscillatory Shear", Polymer Gels and Networks, 1995, 3, 117-133. https://doi.org/10.1016/0966-7822(94)00041-5
  47. H. G. Sim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of Complex Fluids Investigated by a Network Model : A Guideline for Classification", J. Non-Newt. Fluid Mech., 2003, 112, 237-250. https://doi.org/10.1016/S0377-0257(03)00102-2
  48. G. S. Chang, H. J. Ahn, and K. W. Song, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2015, 52, 159-166. https://doi.org/10.12772/TSE.2015.52.159
  49. G. S. Chang, H. J. Ahn, and K. W. Song, "Discrete Fourier Transform Analysis to Characterize the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2016, 53, 317-327. https://doi.org/10.12772/TSE.2016.53.317
  50. H. J. Ahn, G. S. Chang, and K. W. Song, "A Time-Strain Separable K-BKZ Constitutive Equation to Describe the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2017, 54, 230-245.
  51. P. G. de Gennes, "Reptation of a Polymer Chain in the Presence of Fixed Obstacles", J. Chem. Phys., 1971, 55, 572-579. https://doi.org/10.1063/1.1675789
  52. M. Doi and S. F. Edwards, "Dynamics of Concentrated Polymer Systems (Part 1) : Brownian Motion in the Equilibrium State", J. Chem. Soc. Faraday Trans. II, 1978, 74, 1789-1801. https://doi.org/10.1039/F29787401789
  53. M. Doi and S. F. Edwards, "Dynamics of Concentrated Polymer Systems (Part 2) : Molecular Motion under Flow", J. Chem. Soc. Faraday Trans. II, 1978, 74, 1802-1817. https://doi.org/10.1039/F29787401802
  54. M. Doi and S. F. Edwards, "Dynamics of Concentrated Polymer Systems (Part 3) : The Constitutive Equation", J. Chem. Soc. Faraday Trans. II, 1978, 74, 1818-1832. https://doi.org/10.1039/F29787401818
  55. M. Doi and S. F. Edwards, "Dynamics of Concentrated Polymer Systems (Part 4) : Rheological Properties", J. Chem. Soc. Faraday Trans. II, 1979, 75, 38-54. https://doi.org/10.1039/F29797500038
  56. R. G. Larson, "Constitutive Equations for Polymer Melts and Solutions", Butterworths, Boston, 1988.
  57. G. Astarita and G. Marrucci, "Principles of Non-Newtonian Fluid Mechanics", McGraw-Hill, London, 1974.
  58. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes in C : The Art of Scientific Computing", 2nd Ed., Cambridge University Press, New York, 1992.
  59. K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee, and C. H. Lee, "Steady Shear Flow Properties of Aqueous Poly (ethylene oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 193-203.
  60. K. W. Song, J. W. Bae, G. S. Chang, D. H. Noh, Y. H. Park, and C. H. Lee, "Dynamic Viscoelastic Properties of Aqueous Poly(ethylene oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 295-307.
  61. F. E. Bailey, Jr. and J. V. Koleske, "Poly(ethylene oxide)", Academic Press, NewYork, 1976.
  62. K. R. Shah, S. A. Chaudhary, and T. A. Mehta, "Polyox (polyethylene oxide) Multifunctional Polymer in Novel Drug Delivery System", Int. J. Pharm. Sci. Drug Res., 2014, 6, 95-101.
  63. S. Bekiranov, R. Bruinsma, and P. Pincus, "Solution Behavior of Poly(ethylene oxide) in Water as a Function of Temperature and Pressure", Phys. Rev. E., 1997, 55, 577-585.
  64. S. Kawaguchi, G. Imai, J. Suzuki, A. Miyahara, T. Kitano, and K. Ito, "Aqueous Solution Properties of Oligo- and Poly (ethylene oxide) by Static Light Scattering and Intrinsic Viscosity", Polymer, 1997, 38, 2885-2891. https://doi.org/10.1016/S0032-3861(96)00859-2
  65. P. N. Georgelos and J. M. Torkelson, "The Role of Solution Structure in Apparent Thickening Behavior of Dilute PEO/Water Systems", J. Non-Newt. Fluid Mech., 1988, 27, 191-204. https://doi.org/10.1016/0377-0257(88)85013-4