DOI QR코드

DOI QR Code

A Time-Strain Separable K-BKZ Constitutive Equation to Describe the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids

시간-변형량 분리형 K-BKZ 구성방정식을 사용한 점탄성 고분자 액체의 대진폭 전단유동거동 기술

  • Ahn, Hye-Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Chang, Gap-Shik (Industrial Materials and Component Business Team, FITI Testing & Research Institute) ;
  • Song, Ki-Won (Department of Organic Material Science and Engineering, Pusan National University)
  • 안혜진 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 장갑식 (FITI 시험연구원 부품소재사업팀) ;
  • 송기원 (부산대학교 공과대학 유기소재시스템공학과)
  • Received : 2017.07.08
  • Accepted : 2017.08.04
  • Published : 2017.08.31

Abstract

The present study has been designed to describe the nonlinear viscoelastic behavior of concentrated polymer systems in large amplitude oscillatory shear (LAOS) flow fields using a time-strain separable K-BKZ constitutive equation (i.e., Wagner model). Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous poly(ethylene oxide) (PEO) solutions with various molecular weights and different concentrations has been investigated with a various combination of several fixed strain amplitudes and constant angular frequencies. The linear dynamic data (storage modulus and loss modulus) over a wide range of angular frequencies were obtained to determine the relaxation spectrum parameters and the stress relaxation moduli at various deformation magnitudes were measured to determine the damping function. The effects of the number of relaxation spectrum parameters and damping functions on the prediction results of the Wagner model were examined in depth. The nonlinear viscoelastic functions were analyzed by the aid of 3D plots and predicted over a wide range of strain amplitudes to evaluate the overall predictability of the Wagner model. The main findings obtained from this study are summarized as follows : (1) The Lissajous patterns predicted by the Wagner model are in good coincidence with the experimentally obtained stress-strain rate hysteresis loops both in linear and nonlinear viscoelastic regions and are independent of the number of relaxation spectrum parameters used in the calculation of memory function. (2) The effect of damping function on the predictive ability of the Wagner model is more sensitive than that of memory function. When the damping function is smaller than that of the experimental data, the stress amplitude predicted by the Wagner model also becomes smaller. (3) The Wagner model predictions are closely coincident with the experimental results in the linear viscoelastic region. As the strain amplitude is increased, the predicted nonlinear viscoelastic functions are somewhat larger than that of the experimental data. Nevertheless, all trends of the nonlinear viscoelastic behavior are in good agreement with the experimental results in a qualitative sense. (4) The Wagner model predicts the first harmonic loss modulus more exactly than the first harmonic storage modulus. As the strain amplitude is increased, the first harmonic storage modulus is somewhat overpredicted. The third and fifth harmonic storage and loss moduli exhibit an overshoot or an undershoot at large strain amplitudes. This constitutive equation has an ability to qualitatively describe well such dramatic behavioral changes.

Keywords

References

  1. J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications", Van Nostrand Reinhold, New York, 1990.
  2. R. I. Tanner, "Engineering Rheology", 2nd Ed., Oxford University Press, New York, 2000.
  3. K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids", J. Non-Newt. Fluid Mech., 2002, 107, 51-65. https://doi.org/10.1016/S0377-0257(02)00141-6
  4. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J.Rheol., 2005, 49, 747-758. https://doi.org/10.1122/1.1895801
  5. P. R. de Souza Mendes, R. L. Thompson, A. A. Alicke, and R. T. Leite, "The Quasilinear Large-Amplitude Viscoelastic Regime and Its Significance in the Rheological Characterization of Soft Matter", J. Rheol., 2014, 58, 537-561. https://doi.org/10.1122/1.4865695
  6. M. R. B. Mermet-Guyennet, J. G. de Castro, M. Habibi, N. Martel, M. M. Denn, and D. Bonn, "LAOS : The Strain Softening/Strain Hardening Paradox", J. Rheol., 2015, 59, 21-32. https://doi.org/10.1122/1.4902000
  7. X. Li, S. Q. Wang, and X. Wang, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials", J. Rheol., 2009, 53, 1255-1274. https://doi.org/10.1122/1.3193713
  8. S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25. https://doi.org/10.1122/1.3662962
  9. A. Kaye, "Non-Newtonian Flow in Incompressible Fluids", Note No. 134, College of Aeronautics, Cranford, UK, 1962.
  10. B. Bernstein, E. A. Kearsley, and L. J. Zapas, "A Study of Stress Relaxation with Finite Strain", Trans. Soc. Rheol., 1963, 7, 391-410. https://doi.org/10.1122/1.548963
  11. M. H. Wagner, "Analysis of Time-Dependent Nonlinear Stress Growth Data for Shear and Elongational Flow of a Low- Density Branched Polyethylene Melt", Rheol. Acta, 1976, 15, 136-142. https://doi.org/10.1007/BF01517505
  12. A. S. Lodge, "Elastic Liquids", Academic Press, New York, 1964.
  13. A. J. Giacomin, R. S. Jeyaseelan, T. Samurkas, and J. M. Dealy, "Validity of Separable BKZ Model for Large Amplitude Oscillatory Shear", J. Rheol., 1993, 37, 811-826. https://doi.org/10.1122/1.550396
  14. M. J. Reimers and J. M. Dealy, "Sliding Plate Rheometer Studies of Concentrated Polystyrene Solutions : Large Amplitude Oscillatory Shear of a Very High Molecular Weight Polymer in Diethyl Phthalate", J. Rheol., 1996, 40, 167-186. https://doi.org/10.1122/1.550738
  15. C. Gallegos, M. Berjano, A. Guerrero, J. Munoz, and V. Flores, "Transient Flow of Mayonnaise Described by A Nonlinear Viscoelasticity Model", J. Texture Stud., 1992, 23, 153-168. https://doi.org/10.1111/j.1745-4603.1992.tb00517.x
  16. C. Valencia, M. C. Sanchez, A. Ciruelos, A. Latorre, J. M. Madiedo, and C. Gallegos, "Nonlinear Viscoelasticity Modeling of Tomato Paste Products", Food Res. Int., 2003, 36, 911-919. https://doi.org/10.1016/S0963-9969(03)00100-5
  17. P. Partal, A. Guerrero, M. Berjano, and C. Gallegos, "Transient Flow of O/W Sucrose Palmitate Emulsions", J. Food Eng., 1999, 41, 33-41. https://doi.org/10.1016/S0260-8774(99)00071-0
  18. C. Bengoechea, M. C. Puppo, A. Romero, F. Cordobes, and A. Guerrero, "Linear and Nonlinear Viscoelasticity of Emulsions Containing Carob Protein as Emulsifier", J. Food Eng., 2008, 87, 124-135. https://doi.org/10.1016/j.jfoodeng.2007.11.024
  19. C. J. Carriere, A. J. Thomas, and G. E. Inglett, "Prediction of the Nonlinear Transient and Oscillatory Rheological Behavior of Flour Suspensions Using a Strain-Separable Integral Constitutive Equation", Carbohydr. Polym., 2002, 47, 219-231. https://doi.org/10.1016/S0144-8617(01)00165-5
  20. M. R. Mackley, R. T. J. Marshall, J. B. A. F. Smeulders, and F. D. Zhao, "The Rheological Characterization of Polymeric and Colloidal Fluids", Chem. Eng. Sci., 1994, 49, 2551-2565. https://doi.org/10.1016/0009-2509(94)E0082-2
  21. J. M. Madiedo, J. M. Franco, C. Valencia, and C. Gallegos, "Modeling of the Nonlinear Rheological Behavior of a Lubricating Greese at Low Shear Rates", J. Tribol. (Trans. ASME), 2000, 122, 590-596. https://doi.org/10.1115/1.555406
  22. E. Behzadfar and S. G. Hatzikiriakos, "Viscoelastic Properties and Constitutive Modeling of Bitumen", Fuel, 2013, 108, 391-399. https://doi.org/10.1016/j.fuel.2012.12.035
  23. J. Ren and R. Krishnamoorti, "Nonlinear Viscoelastic Properties of Layered-Silicate-Based Intercalated Nanocomposites", Macromolecules, 2003, 36, 4443-4451. https://doi.org/10.1021/ma020412n
  24. S. H. Lee and J. R. Youn, "Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites", Adv. Comp. Mat., 2008, 17, 191-214. https://doi.org/10.1163/156855108X345225
  25. J. D. Ferry, "Viscoelastic Properties of Polymers", 3rd Ed., John Wiley & Sons, New York, 1980.
  26. N. W. Tschoegl, "The Phenomenological Theory of Linear Viscoelastic Behavior", Springer-Verlag, Berlin, 1989.
  27. F. J. Stadler and C. Bailly, "A New Method for the Calculation of Continuous Relaxation Spectra from Dynamic-Mechanical Data", Rheol. Acta, 2009, 48, 33-49. https://doi.org/10.1007/s00397-008-0303-2
  28. I. McDougall, N. Orbey, and J. M. Dealy, "Inferring Meaningful Relaxation Spectra from Experimental Data", J. Rheol., 2014, 58, 779-797. https://doi.org/10.1122/1.4870967
  29. H. M. Laun, "Description of the Nonlinear Shear Behavior of a Low-Density Polyethylene Melt by Means of an Experimentally Determined Strain-Dependent Memory Function", Rheol. Acta, 1978, 17, 1-15. https://doi.org/10.1007/BF01567859
  30. H. M. Laun, "Prediction of Elastic Strains of Polymer Melts in Shear and Elongation", J. Rheol., 1986, 30, 459-501. https://doi.org/10.1122/1.549855
  31. J. Honerkamp and J. Weese, "Determination of the Relaxation Spectrum by a Regularization Method", Macromolecules, 1989, 22, 4372-4377. https://doi.org/10.1021/ma00201a036
  32. M. Baumgaertel and H. H. Winter, "Determination of Discrete Relaxation and Retardation Time Spectra from Dynamic Mechanical Data", Rheol, Acta, 1989, 28, 511-519. https://doi.org/10.1007/BF01332922
  33. L. J. Zapas, "Viscoelastic Behavior under Large Deformations", J. Res. NBS, 1966, 70A, 525-532. https://doi.org/10.6028/jres.070A.044
  34. A. C. Papanastasiou, L. E. Scriven, and C. W. Macosko, "An Integral Constitutive Equation for Mixed Flows : Viscoelastic Characterization", J. Rheol., 1983, 27, 387-410. https://doi.org/10.1122/1.549712
  35. P. R. Soskey and H. H. Winter, "Large Step Shear Strain Experiments with Parallel-Disk Rotational Rheometers", J. Rheol., 1984, 28, 625-645. https://doi.org/10.1122/1.549770
  36. K. Osaki, "On the Damping Function of Shear Relaxation Modulus for Entangled Polymers", Rheol. Acta, 1993, 32, 429-437. https://doi.org/10.1007/BF00396173
  37. K. Osaki, "Constitutive Equation and Damping Function for Entangled Polymers", Korea-Aust. Rheol. J., 1999, 11, 287-291.
  38. V. H. Rolon-Garrido and M. H. Wagner, "The Damping Function in Rheology", Rheol. Acta, 2009, 48, 245-284. https://doi.org/10.1007/s00397-008-0308-x
  39. F. A. Morrison and R. G. Larson, "A Study of Shear Stress Relaxation Anomalies in Binary of Monodisperse Polystyrenes", J. Polym. Sci. B: Polym. Phys., 1992, 30, 943-950. https://doi.org/10.1002/polb.1992.090300902
  40. M. Doi and S. F. Edwards, "The Theory of Polymer Dynamics", Oxford University Press, New York, 1986.
  41. K. W. Song, S. H. Ye, and G. S. Chang, "Rheological Characterization of Aqueous Poly(ethylene oxide) Solutions (IV): Nonlinear Stress Relaxation in Single-Step Large Shear Deformations", J. Kor. Fiber Soc., 1999, 36, 383-395.
  42. J. W. Bae, J. S. Lee, and K. W. Song, "Stress Growth Behavior of Aqueous Poly(ethylene oxide) Solutions at Start-up of Steady Shear Flow", Text. Sci. Eng., 2013, 50, 292-307. https://doi.org/10.12772/TSE.2013.50.292
  43. G. S. Chang, H. J. Ahn, and K. W. Song, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2015, 52, 159-166. https://doi.org/10.12772/TSE.2015.52.159
  44. G. S. Chang, H. J. Ahn, and K. W. Song, "Discrete Fourier Transform Analysis to Characterize the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2016, 53, 317-327. https://doi.org/10.12772/TSE.2016.53.317
  45. K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee, and C. H. Lee, "Steady Shear Flow Properties of Aqueous Poly (ethylene oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 193-203.
  46. K. W. Song, J. W. Bae, G. S. Chang, D. H. Noh, Y. H. Park, and C. H. Lee, "Dynamic Viscoelastic Properties of Aqueous Poly(ethylene oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 295-307.
  47. F. E. Bailey, Jr. and J. V. Koleske, "Poly(ethylene oxide)", Academic Press, New York, 1976.
  48. K. R. Shah, S. A. Chaudhary, and T. A. Mehta, "Polyox (polyethylene oxide) Multifunctional Polymer in Novel Drug Delivery System", Int. J. Pharm. Sci. Drug Res., 2014, 6, 95-101.
  49. S. Bekiranov, R. Bruinsma, and P. Pincus, "Solution Behavior of Poly(ethylene oxide) in Water as a Function of Temperature and Pressure", Phys. Rev. E., 1997, 55, 577-585.
  50. S. Kawaguchi, G. Imai, J. Suzuki, A. Miyahara, T. Kitano, and K. Ito, "Aqueous Solution Properties of Oligo- and Poly(ethylene oxide) by Static Light Scattering and Intrinsic Viscosity", Polymer, 1997, 38, 2885-2891. https://doi.org/10.1016/S0032-3861(96)00859-2
  51. P. N. Georgelos and J. M. Torkelson, "The Role of Solution Structure in Apparent Thickening Behavior of Dilute PEO/Water Systems", J. Non-Newt. Fluid Mech., 1988. 27, 191-204. https://doi.org/10.1016/0377-0257(88)85013-4
  52. C. L. Mallows, "Some Comments on Cp", Technometrics, 1973, 15, 661-675.
  53. K. W. Song, D. H. Noh, and G. S. Chang, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (III) : Determination of Discrete Relaxation Spectrum and Relaxation Modulus from Linear Viscoelastic Functions", J. Kor. Fiber Soc., 1998, 35, 550-561.