DOI QR코드

DOI QR Code

BEHAVIOR OF HOLOMORPHIC FUNCTIONS ON THE BOUNDARY OF THE UNIT DISC

  • Received : 2016.12.11
  • Accepted : 2017.05.28
  • Published : 2017.08.31

Abstract

In this paper, we establish lower estimates for the modulus of the non-tangential derivative of the holomorphic functionf(z) at the boundary of the unit disc. Also, we shall give an estimate below |f''(b)| according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and $z_0{\neq}0$.

Keywords

References

  1. T. Aliyev Azeroglu & B.N. Ornek: A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations 58 (2013), 571-577. https://doi.org/10.1080/17476933.2012.718338
  2. H.P. Boas: Julius and Julia: Mastering the Art of the Schwarz lemma. Amer. Math. Monthly 117 (2010), 770-785. https://doi.org/10.4169/000298910x521643
  3. D. Chelst: A generalized Schwarz lemma at the boundary. Proc. Amer. Math. Soc. 129 (2001), 3275-3278. https://doi.org/10.1090/S0002-9939-01-06144-5
  4. V.N. Dubinin: The Schwarz inequality on the boundary for functions regular in the disc. J. Math. Sci. 122 (2004), 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. V.N. Dubinin: Bounded holomorphic functions covering no concentric circles J. Math. Sci. 207 (2015), 825-831. https://doi.org/10.1007/s10958-015-2406-5
  6. G.M. Golusin: Geometric Theory of Functions of Complex Variable [in Russian]. 2nd edn., Moscow 1966.
  7. M. Jeong: The Schwarz lemma and its applications at a boundary point. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 275-284.
  8. M. Jeong: The Schwarz lemma and boundary fixed points. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), 219-227.
  9. D.M. Burns & S.G. Krantz: Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary. J. Amer. Math. Soc. 7 (1994), 661-676. https://doi.org/10.1090/S0894-0347-1994-1242454-2
  10. T. Liu & X. Tang: The Schwarz Lemma at the Boundary of the Egg Domain $B_{p1,p2}$ in ${\mathbb{C}}^n$. Canad. Math. Bull. 58 (2015), 381-392. https://doi.org/10.4153/CMB-2014-067-7
  11. T. Liu, X. Tang & J. Lu: Schwarz lemma at the boundary of the unit polydisk in ${\mathbb{C}}^n$. Sci. hina Math. 58 (2015), 1-14.
  12. M. Mateljevic: Schwarz lemma, the Carath-eodory and Kobayashi Metrics and Appli-cations in Complex Analysis. XIX GEOMETRICAL SEMINAR, At Zlatibor, Sunday, August 28, 2016 Sunday, September 4, 2016.
  13. M. Mateljevic: Distortion of harmonic functions and harmonic quasiconformal quasi-isometry. Revue Roum. Math. Pures Appl. 51 (2006), 711-722.
  14. M. Mateljevic: Ahlfors-Schwarz lemma and curvature. Kragujevac J. Math. 25 (2003), 155-164.
  15. M. Mateljevic: Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in preparation). ResearchGate.
  16. R. Osserman: A sharp Schwarz inequality on the boundary. Proc. Amer. Math. Soc. 128 (2000), 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  17. B.N. Ornek: Sharpened forms of the Schwarz lemma on the boundary. Bull. Korean Math. Soc. 50 (2013), 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
  18. Ch. Pommerenke: Boundary Behaviour of Conformal Maps. Springer-Verlag, Berlin, 1992.
  19. D. Shoikhet, M. Elin, F. Jacobzon & M. Levenshtein: The Schwarz lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and its Applications. Springer International Publishing, (2014), 135-230.
  20. H. Unkelbach: Uber die Randverzerrung bei konformer Abbildung. Math. Z., 43 (1938), 739-742. https://doi.org/10.1007/BF01181115