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BEHAVIOR OF HOLOMORPHIC FUNCTIONS
ON THE BOUNDARY OF THE UNIT DISC

Bülent Nafi Örnek

Abstract. In this paper, we establish lower estimates for the modulus of the non-
tangential derivative of the holomorphic functionf(z) at the boundary of the unit
disc. Also, we shall give an estimate below |f ′′(b)| according to the first nonzero
Taylor coefficient of about two zeros, namely z = 0 and z0 6= 0.

1. Introduction

Let us consider a function f(z) holomorphic in the unit disc E = {z : |z| < 1}
with f(E) ⊂ E and f(0) = 0. The Schwarz lemma asserts that

|f(z)| ≤ |z| ,
for every z ∈ E and ∣∣f ′(0)

∣∣ ≤ 1.

Moreover, if the equality |f(z)| = |z| holds for any z 6= 0, or |f ′(0)| = 1 then f is a
rotation, that is, f(z) = zeiθ, θ real [6]. More generally, the Schwarz lemma can be
applied to a function with the information f(z0) = η for some z0, η with |z0| < 1,
|η| < 1 instead of f(0) = 0 and it is called the Schwarz-Pick lemma [6].

Let f be a holomorphic function of E into E with f(z0) = η for some z0, η with
|z0| < 1, |η| < 1. Then ∣∣∣∣∣

f(z)− f(z0)
1− f(z0)f(z)

∣∣∣∣∣ ≤
∣∣∣∣

z − z0

1− z0z

∣∣∣∣ , z 6= z0,

and
∣∣f ′(z)

∣∣ ≤ 1− |f(z)|2
1− |z|2 .

Received by the editors December 11, 2016. Accepted May 28, 2017.
2010 Mathematics Subject Classification. 30C80, 32A10.
Key words and phrases. Schwarz lemma on the boundary, holomorphic function, second non-

tangential derivative, Jack’s lemma.

c© 2017 Korean Soc. Math. Educ.

129



130 Bülent Nafi Örnek

Equality holds at some point z if and only if f(z) is a Möbius transformation.
For historical background about the Schwarz lemma and its applications on the

boundary of the unit disc, we refer to (see [2], [19]).

The basic tool in proving our results is the following lemma due to Jack [2].

Lemma 1.1 (Jack’s lemma). Let the function f(z) defined by

f(z) = cpz
p + cp+1z

p+1 + ...

be holomorphic in E with f(0) = 0. If |f(z)| attains its maximum value on the circle
|z| = r at a point z0 ∈ E, then there exists a real number k ≥ p such that

z0f
′(z0)

f(z0)
= k.

Let Ap denote the class of functions

f(z) = z + cp+1z
p+1 + cp+2z

p+2 + ...

that are holomorphic in the unit disc E. Also, M (α) be the subclass ofAp consisting
of all functions f(z) which satisfy

(1.1)
∣∣zf ′′(z)− γ(f ′(z)− 1)

∣∣ < (1− α) |p− γ|
for some real 0 ≤ α < 1 and some complex γ with < (γ) < p.

Let f(z) ∈M (α) and define ϕ(z) in E by

(1.2) ϕ(z) =
f ′(z)− 1

1− α
.

Obviously, ϕ(z) is holomorphic function in the unit disc E and ϕ(0) = 0. That is;

ϕ(z) =
(p + 1) cp+1

1− α
zp +

(p + 2) cp+2

1− α
zp+1 + ...

We want to prove |ϕ(z)| < 1 for |z| < 1. Differentiating (1.2) and simplifiying, we
obtain

zf ′′(z) = (1− α) zϕ′(z)

and, therefore
∣∣zf ′′(z)− γ

(
f ′(z)− 1

)∣∣ =
∣∣(1− α) zϕ′(z)− γ (1− α) ϕ(z)

∣∣

= (1− α) |ϕ(z)|
∣∣∣∣
zϕ′(z)
ϕ(z)

− γ

∣∣∣∣
< (1− α) |p− γ| .
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If there exists a point z0 ∈ E such that

max
|z|≤|z0|

|ϕ(z)| = |ϕ(z0)| = 1,

then Jack’s lemma gives us that ϕ(z0) = eiθ and z0ϕ
′(z0) = kϕ(z0) (k ≥ p).

Thus we have
∣∣z0f

′′(z0)− γ
(
f ′(z0)− 1

)∣∣ = (1− α) |ϕ(z0)|
∣∣∣∣
z0ϕ

′(z0)
ϕ(z0)

− γ

∣∣∣∣
= (1− α) |k − γ|
≥ (1− α) |p− γ| .

This contradict (1.1). So, there is no point z0 ∈ E such that |ϕ(z0)| = 1. This
means that |ϕ(z)| < 1 for |z| < 1. Thus, from the Schwarz lemma, we obtain

|cp+1| ≤ 1− α

1 + p
.

Moreover, the equality |cp+1| = 1−α
1+p holds if and only if

f(z) = z +
1− α

1 + p
zp+1eiθ,

where θ is a real number.
The proof has been completed. Let us now give the statement of the lemma.

Lemma 1.2. If f(z) ∈M (α), then we have

(1.3) |cp+1| ≤ 1− α

1 + p
.

The equality in (1.3) holds if and only if

f(z) = z +
1− α

1 + p
zp+1eiθ,

where θ is a real number.

The following boundary version of the Schwarz lemma was proved in 1938 by
Unkelbach in [20] and then rediscovered and partially improved by Osserman in
2000 [16].

Lemma 1.3. Let f(z) = cpz
p + cp+1z

p+1 + cp+2z
p+2 + ... p ≥ 1, p ∈ N be a

holomorphic function self-mapping of E = {z : |z| < 1}, that is |f(z)| < 1 for all
z ∈ E. Assume that there is a b ∈ ∂E so that f extend continuously to b, |f(b)| = 1
and f ′(b) exists. Then

(1.4)
∣∣f ′(b)∣∣ ≥ p +

1− |cp|
1 + |cp| .
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The equality in (1.4) holds if and only if f is of the form

f(z) = −zp a− z

1− az
, ∀z ∈ E,

for some constant a ∈ (−1, 0].

Corollary 1.4. Under the hypotheses of Lemma 1.3, we have

(1.5)
∣∣f ′(b)∣∣ ≥ p,

with equality only if f is of the form

f(z) = zpeiθ,

where θ is a real number.

The following Lemma 1.5 and Corollary 1.6, known as the Julia-Wolff lemma, is
needed in the sequel [18].

Lemma 1.5 (Julia-Wolff lemma). Let f be a holomorphic function in E, f(0) = 0
and f(E) ⊂ E. If, in addition, the function f has an angular limit f(b) at b ∈ ∂E,
|f(b)| = 1, then the angular derivative f ′(b) exists and 1 ≤ |f ′(b)| ≤ ∞.

Corollary 1.6. The holomorphic function f has a finite angular derivative f ′(b) if
and only if f ′ has the finite angular limit f ′(b) at b ∈ ∂E.

Inequality (1.4) and its generalizations have important applications in geometric
theory of functions (see, e.g., [6], [18]). Therefore, the interest to such type results is
not vanished recently (see, e.g., [1], [2], [4], [5], [10], [11], [16], [17], [19] and references
therein).

Vladimir N. Dubinin has continued this line and has made a refinement on the
boundary Schwar lemma under the assumption that f(z) = cpz

p + cp+1z
p+1 + ...,

with a zero set {zk} (see [4]).
S. G. Krantz and D. M. Burns [9] and D. Chelst [3] studied the uniqueness part of

the Schwarz lemma. In M. Mateljević’s papers, for more general results and related
estimates, see also ([12], [13], [14] and [15]).

Also, M. Jeong [8] showed some inequalities at a boundary point for different
form of holomorphic functions and found the condition for equality and in [7] a
holomorphic self map defined on the closed unit disc with fixed points only on the
boundary of the unit disc.
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2. Main Results

In this section, for holomorphic function f(z) = z + cp+1z
p+1 + cp+2z

p+2 + ...

belong to the class of M (α), it has been estimated from below the modulus of the
non-tangential derivative of the function on the boundary point of the unit disc.

Theorem 2.1. Let f(z) ∈ M (α). Assume that, for some b ∈ ∂E, f ′ has a non-
tangential limit f ′(b) at b and f ′(b) = α. Then f has the second non-tangential
derivative at b ∈ ∂E and

(2.1)
∣∣f ′′(b)∣∣ ≥ p (1− α) .

The equality in (2.1) occurs for the function

f(z) = z − 1− α

1 + p
zp+1.

Proof. Consider the function

ϕ(z) =
f ′(z)− 1

1− α
.

ϕ(z) is a holomorphic function in the unit disc E and ϕ(0) = 0. From the Jack’s
lemma and since f(z) ∈ M (α), we obtain |ϕ(z)| < 1 for |z| < 1. It can be easily
shown a non-tangential derivative of ϕ at b ∈ ∂E (see [18]). Thus, the second non-
tangential derivative of f(z) at b ∈ ∂E is obtained. Also, we have |ϕ(b)| = 1 for
b ∈ ∂E.

From (1.5), we obtain

p ≤ ∣∣ϕ′(b)∣∣ =
|f ′′(b)|
1− α

and ∣∣f ′′(b)∣∣ ≥ p (1− α) .

Now, we shall show that the inequality (2.1) is sharp. Let

f(z) = z − 1− α

1 + p
zp+1.

Then
f ′(z) = 1− 1− α

1 + p
(1 + p) zp = 1− (1− α) zp,

f ′′(z) = − (1− α) pzp−1

and ∣∣f ′′(1)
∣∣ = (1− α) p.

¤
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Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

(2.2)
∣∣f ′′(b)∣∣ ≥ (1− α)

(
p +

1− α− (p + 1) |cp+1|
1− α + (p + 1) |cp+1|

)
.

The inequality (2.2) is sharp with equality for the function

f(z) = z − 1− α

1 + p
zp+1.

Proof. Let ϕ(z) be as in the proof of Theorem 2.1. Using the inequality (1.4) for
the function ϕ(z), we obtain

p +
1− |dp|
1 + |dp| ≤

∣∣ϕ′(b)∣∣ ≤ |f ′′(b)|
1− α

,

where |dp| = |ϕ(p)(0)|
p! = 1+p

1−α |cp+1|. Thus, we take

p +
1− 1+p

1−α |cp+1|
1 + 1+p

1−α |cp+1|
≤ |f ′′(b)|

1− α

and

p +
1− α− (1 + p) |cp+1|
1− α + (1 + p) |cp+1| ≤

|f ′′(b)|
1− α

So, we obtain the inequality (2.2).
Now, we shall show that the inequality (2.2) is sharp. Let

f(z) = z − 1− α

1 + p
zp+1.

Then

f ′(z) = 1− 1− α

1 + p
(1 + p) zp = 1− (1− α) zp,

f ′′(z) = − (1− α) pzp−1

and
∣∣f ′′(1)

∣∣ = (1− α) p.

Since |cp+1| = 1−α
1+p , (2.2) is satisfied with equality. That is,

(1− α)
(

p +
1− α− (p + 1) |cp+1|
1− α + (p + 1) |cp+1|

)
= (1− α)

(
p +

1− α− (p + 1)1−α
1+p

1− α + (p + 1)1−α
1+p

)

= (1− α) p.

¤



BEHAVIOR OF HOLOMORPHIC FUNCTIONS ON THE BOUNDARY 135

Theorem 2.3. Let f(z) ∈M (α) and p ≥ 2. Assume that, for some b ∈ ∂E, f ′ has
a non-tangential limit f ′(b) at b and f ′(b) = α. Then f has the second non-tangential
derivative at b ∈ ∂E and

(2.3)
∣∣f ′′(b)∣∣ ≥ (1− α)

(
p +

2 (1− α− (1 + p) |cp+1|)2
(1− α)2 − ((p + 1) |cp+1|)2 + (1− α) (p + 2) |cp+2|

)
.

The inequality (2.3) is sharp with equality for the function

f(z) = z − 1− α

1 + p
zp+1.

Proof. Let ϕ(z) be as in the proof of Theorem 2.1. By the maximum principle for
each z ∈ E, we have |ϕ(z)| ≤ |zp|. So,

ω(z) =
ϕ(z)
zp

is a holomorphic function in E and |ω(z)| < 1 for |z| < 1.
In particular, we have

(2.4) |ω(0)| = 1 + p

1− α
|cp+1| ≤ 1

and ∣∣ω′(0)
∣∣ =

p + 2
1− α

|cp+2| .
Moreover, it can be seen that

bϕ′(b)
ϕ(b)

=
∣∣ϕ′(b)∣∣ ≥ ∣∣(bp)′

∣∣ =
b (bp)′

bp
.

The function

Υ(z) =
ω(z)− ω(0)
1− ω(0)ω(z)

is a holomorphic in the unit disc E, |Υ(z)| < 1 for |z| < 1, Υ(0) = 0 and |Υ(b)| = 1
for b ∈ ∂E. It can be easily shown that the function Υ has a non-tangential derivative
at b ∈ ∂E (see [18]). Therefore, the second non-tangential derivative of f at b ∈ ∂E

is obtained.
From (1.4), we obtain

2
1 + |Υ′(0)| ≤ ∣∣Υ′(b)

∣∣ =
1− |ω(0)|2∣∣∣1− ω(0)ω(b)

∣∣∣
2

∣∣ω′(b)∣∣ ≤ 1 + |ω(0)|
1− |ω(0)|

∣∣ω′(b)∣∣

=
1 + |ω(0)|
1− |ω(0)|

{∣∣ϕ′(b)∣∣− p
}

.
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Since

Υ′(z) =
1− |ω(0)|2(

1− ω(0)ω(z)
)2 ω′(z),

∣∣Υ′(0)
∣∣ =

|ω′(0)|
1− |ω(0)|2 =

(1− α) (p + 2) |cp+2|
(1− α)2 − ((p + 1) |cp+1|)2

,

we take

2

1 + (1−α)(p+2)|cp+2|
(1−α)2−((p+1)|cp+1|)2

≤ 1 + 1+p
1−α |cp+1|

1− 1+p
1−α |cp+1|

{ |f ′′(b)|
1− α

− p

}

=
1− α + (1 + p) |cp+1|
1− α− (1 + p) |cp+1|

{ |f ′′(b)|
1− α

− p

}
.

Therefore, we obtain

p +
2

1 + (1−α)(p+2)|cp+2|
(1−α)2−((p+1)|cp+1|)2

1− α− (1 + p) |cp+1|
1− α + (1 + p) |cp+1| ≤

|f ′′(b)|
1− α

.

So, we obtain the inequality (2.3).
To show that the inequality (2.3) is sharp, take the holomorphic function

f(z) = z − 1− α

1 + p
zp+1.

Then

f ′′(z) = − (1− α) pzp−1

and ∣∣f ′′(1)
∣∣ = (1− α) p.

Since |cp+1| = 1−α
1+p , (2.3) is satisfied with equality. ¤

If f(z)−z has no critical points different from z = 0 in Theorem 2.3, the inequality
(2.3) can be further strengthened. This is given by the following theorem.

Theorem 2.4. Let f(z) ∈ M (α) and f(z) − z has no critical points in E except
z = 0, cp+1 > 0, and p ≥ 2. Assume that, for some b ∈ ∂E, f ′ has a non-tangential
limit f ′(b) at b and f ′(b) = α. Then f has the second non-tangential derivative at
b ∈ ∂E and we have the inequality

(2.5)
∣∣f ′′(b)∣∣ ≥ (1− α)


p−

2(p + 1) |cp+1| ln2
(

1+p
1−α |cp+1|

)

2(p + 1) |cp+1| ln
(

1+p
1−α |cp+1|

)
− (p + 2) |cp+2|
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and

(2.6) |cp+2| ≤ 2
p + 2

∣∣∣∣(p + 1)cp+1 ln
(

(p + 1) |cp+1|
1 + α

)∣∣∣∣ .

In addition, the equality in (2.5) occurs for the function f(z) = z− 1−α
1+p zp+1 and the

equality in (2.6) occurs for the function

f(z) =

z∫

0

1 + αtpeQ

1− tpeQ
dt,

where 0 < cp+1 < 1, ln
(

1+p
1−α |cp+1|

)
< 0 and Q = 1+t

1−t ln
(

p+1
1−αcp+1

)
.

Proof. Let cp+1 > 0 in the expression of the function f(z). Having in mind the
inequality (2.4) and the function f(z)−z has no critical points in E except E−{0}, we
denote by lnω(z) the holomorphic branch of the logarithm normed by the condition

ln ω(0) = ln
(

1 + p

1− α
|cp+1|

)
< 0.

The auxiliary function

Φ(z) =
lnω(z)− lnω(0)
lnω(z) + lnω(0)

is a holomorphic in the unit disc E, |Φ(z)| < 1,Φ(0) = 0 and |Φ(b)| = 1 for b ∈ ∂E. It
can be easily shown a non-tangential derivative of Φ at b ∈ ∂E (see [18]). Therefore,
the second non-tangential derivative of f at b ∈ ∂E is obtained.

From (1.4), we obtain

2
1 + |Φ′(0)| ≤ ∣∣Φ′(b)∣∣ =

|2 lnω(0)|
|lnω(b) + lnω(0)|2

∣∣∣∣
ω′(b)
ω(b)

∣∣∣∣

=
−2 lnω(0)

ln2 ω(0) + arg2 ω(b)

{∣∣ϕ′(b)∣∣− p
}

.

Replacing arg2 ω(b) by zero, then

1

1− (p+2)|cp+2|
2(p+1)|cp+1| ln( 1+p

1−α
|cp+1|)

≤ −1

ln
(

1+p
1−α |cp+1|

)
{ |f ′′(b)|

1− α
− p

}
.

Thus, we obtain the inequality (1.15) with an obvious equality case.
Likewise, Φ(z) function satisfies the assumptions of the Schwarz lemma, we obtain

1 ≥ ∣∣Φ′(0)
∣∣ =

|2 ln ω(0)|
|lnω(0) + lnω(0)|2

∣∣∣∣
ω′(0)
ω(0)

∣∣∣∣

=
−1

2 ln
(

1+p
1−α |cp+1|

)
p+2
1−α |cp+2|
1+p
1−α |cp+1|
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and

1 ≥ −1

2 ln
(

1+p
1−α |cp+1|

) (p + 2) |cp+2|
(p + 1) |cp+1| .

Therefore, we have

|cp+2| ≤ 2
p + 2

∣∣∣∣(p + 1)cp+1 ln
(

p + 1
1− α

|cp+1|
)∣∣∣∣ .

We shall show that the inequality (2.6) is sharp. Let

f(z) =

z∫

0

1 + αtpeQ

1− tpeQ
dt.

Thus, we get

f ′(z) =
1 + αzpeQ

1− zpeQ

and

f ′(z) = 1 + zpk(z),

where

k(z) = (1 + α)
e

1+z
1−z

ln( p+1
1−α

cp+1)

1− zpe
1+z
1−z

ln( p+1
1−α

cp+1)
.

Then

k′(0) = (p + 2) cp+2.

Under the simple calculations, we obtain

(p + 2) cp+2 = 2 ln
(

p + 1
1− α

cp+1

)
(p + 1) cp+1

and

|cp+2| = 2
p + 2

∣∣∣∣(p + 1) cp+1 ln
(

p + 1
1− α

|cp+1|
)∣∣∣∣ .

¤

The following inequality (2.7) is weaker, but is simpler than (2.5) and does not
contain the coeffient cp+2.

Theorem 2.5. Let f(z) ∈ M (α) and f(z) − z has no critical points in E except
z = 0, cp+1 > 0, and p ≥ 2. Assume that, for some b ∈ ∂E, f ′ has a non-tangential
limit f ′(b) at b and f ′(b) = α. Then f has the second non-tangential derivative at
b ∈ ∂E and we have the inequality

(2.7)
∣∣f ′′(b)∣∣ ≥ (1− α)

(
p− 1

2
ln

(
(p + 1)
1− α

|cp+1|
))

.
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The inequality (2.7) is sharp and the equality is achieved if and only if f(z) is the
function of the form

f(z) =

z∫

0

1 + αtpeQ

1− tpeQ
dt,

where 0 < cp+1 < 1, ln
(

(p+1)cp+1

1−α

)
< 0, Q = 1+teiθ

1−teiθ ln
(

(p+1)cp+1

1−α

)
and θ is a real

number.

Proof. Let cp+1 > 0 . Using the inequality (1.5) for the function Φ(z), we obtain

1 ≤ ∣∣Φ′(b)∣∣ =
|2 ln ω(0)|

|ln ω(b) + lnω(0)|2
∣∣∣∣
ω′(b)
ω(b)

∣∣∣∣ =
−2 lnω(0)

ln2 ω(0) + arg2 ω(b)

{∣∣ϕ′(b)∣∣− p
}

.

Replacing arg2 ϕ(b) by zero, then

(2.8) 1 ≤ ∣∣Φ′(b)∣∣ ≤ −2

ln
(

1+p
1−α |cp+1|

)
{ |f ′′(b)|

1− α
− p

}
.

Therefore, we obtain the inequality (2.8).
If |f ′′(b)| = (1− α)

(
p− 1

2 ln
(

(p+1)
1−α |cp+1|

))
from (2.8) and |Φ′(b)| = 1, we obtain

f(z) =

z∫

0

1 + αtpe
1+teiθ

1−teiθ ln

(
(p+1)cp+1

1−α

)

1− tpe
1+teiθ

1−teiθ ln

(
(p+1)cp+1

1−α

) dt.

¤
In the following Theorem, we shall give an estimate below |f ′′(b)| according to

the first nonzero Taylor coefficient of about two zeros, namely z = 0 and z0 6= 0.

Theorem 2.6. Let f(z) = z + c2z
2 + c3z

3 + ... ∈ M (α) and f ′(z0) = 1 for 0 <

|z0| < 1. Assume that, for some b ∈ ∂E, f ′ has a non-tangential limit f ′(b) at b and
f ′(b) = α. Then f has the second non-tangential derivative at b ∈ ∂E and

(2.9) |f ′′(b)| ≥ (1−α)
(

1+ 1−|z0|2
|1−z0|2 + (1−α)|z0|−|f ′′(0)|

(1−α)|z0|+|f ′′(0)|×[
1 +

(1−α)2|z0|2+|f ′′(0)|(1−|z0|2)|f ′′(z0)|−(1−α)(1−|z0|2)|f ′′(z0)|−(1−α)|f ′′(0)|
(1−α)2|z0|2+|f ′′(0)|(1−|z0|2)|f ′′(z0)|+(1−α)(1−|z0|2)|f ′′(z0)|+(1−α)|f ′′(0)|

1−|z0|2
|1−z0|2

])
.

The inequality (2.9) is sharp with equality for each possible values |f ′′(0)|=
(1− α) c and |f ′′(z0)| = (1− α) d

(
0 ≤ c ≤ (1− α) |z0| , 0 ≤ d ≤ (1− α) |z0|

1−|z0|2
)
.

Proof. Let

p(z) =
z − z0

1− z0z
.
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Let k : E → E be a holomorphic function and a point z0 ∈ E. Therefore, we have

(2.10) |k(z)| ≤ |k(z0)|+ |p(z)|
1 + |k(z0)| |p(z)| .

If w : E → E is holomorphic function and 0 < |z0| < 1, letting

k(z) =
w(z)− w(0)

z
(
1− w(0)w(z)

)

in (2.10), we obtain

∣∣∣∣∣∣
w(z)− w(0)(
1− w(0)w(z)

)
∣∣∣∣∣∣
≤ |z|

∣∣∣∣ w(z0)−w(0)

z0(1−w(0)w(z0))

∣∣∣∣ + |p(z)|

1 +
∣∣∣∣ w(z0)−w(0)

z0(1−w(0)w(z0))

∣∣∣∣ |p(z)|

and

(2.11) |w(z)| ≤
|w(0)|+ |z| |C|+|p(z)|

1+|C||p(z)|
1 + |w(0)| |z| |C|+|p(z)|

1+|C||p(z)|
,

where

C =
w(z0)− w(0)

z0

(
1− w(0)w(z0)

) .

Without loss of generality, we will assume that b = 1. If we take

w(z) =
ϕ(z)

z z−z0
1−z0z

,

then

w(0) =
ϕ′(0)
−z0

, w(z0) =
ϕ′(z0)

(
1− |z0|2

)

z0

and

C =
ϕ′(z0)(1−|z0|2)

z0
+ ϕ′(0)

z0

z0

(
1 + ϕ′(0)

z0

ϕ′(z0)(1−|z0|2)
z0

) ,

where |C| ≤ 1. Let |w(0)| = β and

D =

∣∣∣∣
ϕ′(z0)(1−|z0|2)

z0

∣∣∣∣ +
∣∣∣ϕ′(0)

z0

∣∣∣

|z0|
(

1 +
∣∣∣ϕ′(0)

z0

∣∣∣
∣∣∣∣
ϕ′(z0)(1−|z0|2)

z0

∣∣∣∣
) .
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From (2.11), we take

|ϕ(z)| ≤ |z| |p(z)|
β + |z| D+|p(z)|

1+D|p(z)|
1 + β |z| D+|p(z)|

1+D|p(z)|

and

1− |ϕ(z)|
1− |z| ≥

1 + β |z| D+|p(z)|
1+D|p(z)| − β |z| |p(z)| − |z|2 |p(z)| D+|p(z)|

1+D|p(z)|

(1− |z|)
(
1 + β |z| D+|p(z)|

1+D|p(z)|
) = ψ.

Let ϑ(z) = 1 + β |z| D+|p(z)|
1+D|p(z)| and q(z) = 1 + D |p(z)|. Then

(2.12)

ψ =
1− |z|2 |p(z)|2

(1− |z|) ϑ(z)q(z)
+ D |p(z)| 1− |z|2

(1− |z|) ϑ(z)q(z)
+ Dβ |z| 1− |p(z)|2

(1− |z|) ϑ(z)q(z)
.

Since

lim
z→1

ϑ(z) = 1 + β, lim
z→1

q(z) = 1 + D

and

1− |p(z)|2 = 1−
∣∣∣∣

z − z0

1− z0z

∣∣∣∣
2

=

(
1− |z0|2

)(
1− |z|2

)

|1− z0z|2
,

passing to the non-tangential limit in (2.12) gives

∣∣ϕ′(1)
∣∣ ≥ 2

(1 + β) (1 + D)

(
1 +

1− |z0|2
|1− z0|2

+ D + βD
1− |z0|2
|1− z0|2

)

= 1 +
1− |z0|2
|1− z0|2

+
1− β

1 + β

(
1 +

1−D

1 + D

1− |z0|2
|1− z0|2

)
.

Moreover, since

1− β

1 + β
=

1− |w(0)|
1 + |w(0)| =

1− |ϕ′(0)|
|z0|

1 + |ϕ′(0)|
|z0|

=
|z0| − |ϕ′(0)|
|z0|+ |ϕ′(0)| =

|z0| − |f ′′(0)|
1−α

|z0|+ |f ′′(0)|
1−α

=
(1− α) |z0| − |f ′′(0)|
(1− α) |z0|+ |f ′′(0)|

and
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1−D

1 + D
=

1−

∣∣∣∣∣
ϕ′(z0)(1−|z0|2)

z0

∣∣∣∣∣+
∣∣∣ ϕ′(0)

z0

∣∣∣

|z0|
(

1+
∣∣∣ ϕ′(0)

z0

∣∣∣
∣∣∣∣

ϕ′(z0)(1−|z0|2)
z0

∣∣∣∣
)

1 +

∣∣∣∣
ϕ′(z0)(1−|z0|2)

z0

∣∣∣∣+
∣∣∣ ϕ′(0)

z0

∣∣∣

|z0|
(

1+
∣∣∣ ϕ′(0)

z0

∣∣∣
∣∣∣∣

ϕ′(z0)(1−|z0|2)
z0

∣∣∣∣
)

=
|z0|

(
1 +

∣∣∣ϕ′(0)
z0

∣∣∣
∣∣∣∣
ϕ′(z0)(1−|z0|2)

z0

∣∣∣∣
)
−

∣∣∣∣
ϕ′(z0)(1−|z0|2)

z0

∣∣∣∣−
∣∣∣ϕ′(0)

z0

∣∣∣

|z0|
(

1 +
∣∣∣ϕ′(0)

z0

∣∣∣
∣∣∣∣
ϕ′(z0)(1−|z0|2)

z0

∣∣∣∣
)

+
∣∣∣∣
ϕ′(z0)(1−|z0|2)

z0

∣∣∣∣ +
∣∣∣ϕ′(0)

z0

∣∣∣

=

|z0|
(

1 + |f ′′(0)|
(1−α)|z0|

|f ′′(z0)|
1−α (1−|z0|2)

|z0|

)
−

|f ′′(z0)|
1−α (1−|z0|2)

|z0| − |f ′′(0)|
(1−α)|z0|

|z0|
(

1 + |f ′′(0)|
(1−α)|z0|

|f ′′(z0)|
1−α (1−|z0|2)

|z0|

)
+

|f ′′(z0)|
1−α (1−|z0|2)

|z0| + |f ′′(0)|
(1−α)|z0|

=
(1− α)2 |z0|2 + |f ′′(0)|

(
1− |z0|2

)
|f ′′(z0)|

(1− α)2 |z0|2 + |f ′′(0)|
(
1− |z0|2

)
|f ′′(z0)|

×

− (1− α)
(
1− |z0|2

)
|f ′′(z0)| − (1− α) |f ′′(0)|

+(1− α)
(
1− |z0|2

)
|f ′′(z0)|+ (1− α) |f ′′(0)|

we obtain
|ϕ′(1)| ≥ 1 + 1−|z0|2

|1−z0|2 + (1−α)|z0|−|f ′′(0)|
(1−α)|z0|+|f ′′(0)|×[

1 +
(1−α)2|z0|2+|f ′′(0)|(1−|z0|2)|f ′′(z0)|−(1−α)(1−|z0|2)|f ′′(z0)|−(1−α)|f ′′(0)|
(1−α)2|z0|2+|f ′′(0)|(1−|z0|2)|f ′′(z0)|+(1−α)(1−|z0|2)|f ′′(z0)|+(1−α)|f ′′(0)|

1−|z0|2
|1−z0|2

]
.

From (1.2), we have

ϕ′(z) =
f ′′(z)
1− α

and
∣∣ϕ′(1)

∣∣ =
|f ′′(1)|
1− α

.

Thus, we obtain the inequality (2.9).
Now, we shall show that the inequality (2.9) is sharp.
Since w(z) = ϕ(z)

z
z−z0
1−z0z

is holomorphic function in the unit disc and |w(z)| ≤ 1 for

|z| < 1, we obtain
∣∣ϕ′(0)

∣∣ ≤ |z0|
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and
∣∣ϕ′(z0)

∣∣ ≤ |z0|
1− |z0|2

.

We take z0 ∈ (−1, 0) and arbitrary two numbers c and d, such that 0 ≤ c ≤
(1− α) |z0|, 0 ≤ d ≤ (1− α) |z0|

1−|z0|2 . Let

K =
d(1−|z0|2)

z0
+ c

z0

z0

(
1 + cd1−|z0|2

z2
0

) =
1
z2
0

d
(
1− |z0|2

)
+ c

1 + cd1−|z0|2
z2
0

.

The composite function

υ(z) = −z
z − z0

1− z0z

− c
z0

+ z
K+

z−z0
1−z0z

1+K
z−z0
1−z0z

1− c
z0

z
K+

z−z0
1−z0z

1+K
z−z0
1−z0z

is holomorphic in E and |υ(z)| < 1 for |z| < 1. Let

(2.13)
f ′(z)− 1

1− α
= −z

z − z0

1− z0z

− c
z0

+ z
K+

z−z0
1−z0z

1+K
z−z0
1−z0z

1− c
z0

z
K+

z−z0
1−z0z

1+K
z−z0
1−z0z

.

Therefore, we take |f ′′(0)| = (1− α) c and

|f ′′(z0)|
1− α

= − z0

1− z2
0

− c
z0

+ Kz0

1− c
z0

z0K
=

z0

1− z2
0

− c
z0

+ 1
z2
0

d(1−|z0|2)+c

1+cd
1−|z0|2

z2
0

z0

1− c
z0

z0
1
z2
0

d(1−|z0|2)+c

1+cd
1−|z0|2

z2
0∣∣f ′′(z0)

∣∣ = (1− α) d.

From (2.13), with the simple calculations, we obtain

|f ′′(1)|
1− α

= 1 +
1− z2

0

(1− z0)
2

+

(
1 + 1−z2

0

(1−z0)2
1−K2

(1+K)2

)(
1− c

z0

)
+ c

z0

(
1 + 1−z2

0

(1−z0)2
1−K2

(1+K)2

) (
− c

z0
+ 1

)

(
− c

z0
+ 1

)2

= 1 +
1− z2

0

(1− z0)
2 +

1 + c
z0

1− c
z0

(
1 +

1− z2
0

(1− z0)
2

1−K

1 + K

)
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= 1 +
1− z2

0

(1− z0)
2

+
c + z0

−c + z0

(
1 +

1− z2
0

(1− z0)
2

z2
0 + cd

(
1− z2

0

)− d
(
1− z2

0

)− c

z2
0 + cd

(
1− z2

0

)
+ d

(
1− z2

0

)
+ c

)

and

|f ′′(1)|
1− α

= 1+
1− z2

0

(1− z0)
2 +

c + z0

−c + z0

(
1 +

1− z2
0

(1− z0)
2

z2
0 + cd

(
1− z2

0

)− d
(
1− z2

0

)− c

z2
0 + cd

(
1− z2

0

)
+ d

(
1− z2

0

)
+ c

)
.

Since z0 ∈ (−1, 0), the last equality show that (2.9) is sharp. ¤
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