DOI QR코드

DOI QR Code

연안암반대수층의 해수침투경향성 파악을 위한 전기전도도 시계열 분석과 예측

Time Series Analysis and Forecasting of Electrical Conductivity in Coastal Aquifers

  • 투고 : 2017.08.08
  • 심사 : 2017.08.28
  • 발행 : 2017.08.28

초록

전라남도는 연안지역은 농업활동과 상수도의 미보급으로 인하여 지하수에 크게 의존하고 있다. 지하수의 과다사용은 지하수위 저하를 일으키며 그로 인한 해수침투가 발생할 가능성이 매우 높다. 따라서 지하수 사용에 따른 해수침투 관리가 매우 필요한 지역이다. 전라남도 무안군의 연안암반대수층에서 측정된 EC 자료를 이용하여 해안가 대수층에 적합한 시계열 모형을 구축하고, 해수침투의 지표인 EC를 예측하고자 시계열 분석을 수행하였다. 1년 이상 측정한 EC 시계열 자료는 짧은 주기적인 변동과 함께 추세적으로 증가하는 비정상 시계열의 특성을 보였다. 시계열 분석을 통해 시계열 모형 식별 결과 ARIMA 모형과 계절적인 요인을 고려 할 수 있는 SARIMA 모형 이 적합한 것으로 나타났다. 하지만 두 모형 적용한 결과, EC의 주기적인 변동으로 인해 ARIMA보다는 EC 자료의 변동 특성을 잘 반영한 SARIMA 모형이 예측에 있어서 유리한 것으로 나타났다. 위와 같이 시계열 분석은 암반 대수층에서 해수침투로 인한 EC의 변화를 예측하는데 있어 유용한 것으로 나타났다.

Seawater intrusion into coastal fractured rock aquifer, resulting in groundwater contamination, is of serious concern in coastal areas of Jeolla Namdo, Korea, which heavily depends on groundwater resources. Time series analysis and forecasting were carried out to analyze and predict EC which is a major indicator of seawater intrusion. Two time series models of autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) were tested for suggesting appropriate time series model. Time series data of EC measured over one year showed a increasing trend with short periodic fluctuations, due to tidal effect and pumping, which indicated that EC time series data tended to be non-stationary. SARIMA model was found better fitted to observed EC than any other time series model. Time series analysis and modeling was found to be a useful tool to analyze EC at coastal fractured rock aquifer subject to seawater intrusion.

키워드

참고문헌

  1. Bear, J., Cheng, A.H.-D., Soreek, S., Quazar, D. and Herrera, I. (1999) Seawater intrusion in coastal aquifersconcepts, methods, and practices. Kluwer Academic Publishers, p.625.
  2. Bierkens, M.E.P., Knotters, M. and van Geer, F.C. (1999) Calibration of transfer function-noise models to sparsely or irregularly observed time series. Water Resource Research, v.35, p.1741-1750. https://doi.org/10.1029/1999WR900083
  3. Box, G.E.P. and Jenkins, G.M. (1976) Time series analysis forecasting and control. Wiley, 579p.
  4. Brockwell, P.J. and Davis, R.A. (2002) Introduction to time series and forcasting. 2nd(ed.), Springer, New York, 434p.
  5. Cho, S.S., Son, Y.S. and Sung, B.C. (2002) Time series analysis using SAS/ETS 4th(ed.). Youlgok Press, 430p.
  6. Durbin, J. (1960) The fitting of time-series models. Review of the International Statistical Institute, v.28, p.233-244. https://doi.org/10.2307/1401322
  7. Harvey, A.C. (1989) Forecasting, structural time series models and the Kalman filter. Cambridge Univ. Press, 554p.
  8. Han, K.J. (2015) Prediction and time series analysis using SPSS. Baeksan Press, 568p.
  9. Heo, M.H. (2005) Time series analysis and missing value analysis. SPSS, 49p.
  10. Kim, H.J. and Yeo, I.W. (2014) Development of the autoregressive and cross-regressive model for groundwater level prediction at Muan costal aquifer in Korea, Journal of Soil and Groundwater Environment, v.19, p.23-30. https://doi.org/10.7857/JSGE.2014.19.4.023
  11. Kim, J.H., Lee, J.H., Cheong, T.J., Kim, R.H., Koh, D.C., Ryu, J.S. and Chang, H.W. (2005) Use of the time series analysis for the identification of tidal effect on groundwater in the coastal area of Kimje, Korea. Journal of Hydrology, v.300, p.188-198. https://doi.org/10.1016/j.jhydrol.2004.06.004
  12. Kim, J.H., Yum, B.W., Kim, R.H., Koh, D.C., Cheong, T.J., Lee, J. and Chang, H.W. (2003) Application of cluster analysis for the hydrogeochemical factors of saline groundwater in Kimje, Korea, Geosciences Journal, v.7, p.313-322. https://doi.org/10.1007/BF02919561
  13. Kim, K.Y., Seoung, H.J., Kim, T.H., Park, K.H., Woo, N.C., Park, Y.S., Koh, G.W. and Park W.B. (2006) Tidal effects on variations of fresh saltwater interface and groundwater flow in multilayered coastal aquifer on a volcanic island (Jeju island, Korea). Journal of Hydrology, v.330, p.525-542. https://doi.org/10.1016/j.jhydrol.2006.04.022
  14. Kim, Y.H. (2002) Time series prediction. Hyoungseol Press, 447p.
  15. Knotters, M. and van Walsum, P.E.V. (1997) Estimating fluctuation quantities from time series of water-table depth using models with a stochastic component. Journal of Hydrology, v.197, p.25-46. https://doi.org/10.1016/S0022-1694(96)03278-7
  16. Lee, J.G. (2017) R program recipes for time series data analysis. Slow & Steady Press, 472p.
  17. Lee, J.Y. and Lee, K.K. (2000) Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. Journal of Hydrology, v.229, p.190-201. https://doi.org/10.1016/S0022-1694(00)00158-X
  18. Lee, J.Y. and Lee, K.K. (2002) A comparative study on characteristics of water level responses to rainfall in the two aquifer systems. Journal of Soil and Groundwater Environment, v.7, p.3-14.
  19. Lee, S.I., Lee, S.K. and Hamm, S.Y. (2009) A model For groundwater time-series from the well field of riverbank filtration, Journal of Korea Water Resources Association, v.42, p.673-680. https://doi.org/10.3741/JKWRA.2009.42.8.673
  20. Park, H.Y., Jang, K.Y., Ju, J.W., and Yeo, I.W. (2012) Hydrogeological characterization of seawater intrusion in tidally-forced coastal fractured bedrock aquifer. Journal of Hydrology, v.446-447, p.77-89. https://doi.org/10.1016/j.jhydrol.2012.04.033
  21. Salas, J.D. and Obeysekera, J.T.B. (1982) ARMA model identification of hydrological time series. Water Resource Research, v.29, p.2011-202.
  22. Shumway, R.H. and Stoffer, D.S. (2011) Time series analysis and its applications. Springer, New York, 596p.
  23. Wei, W.W.S. (2005) Time series analysis: univariate and multivariate methods. 2nd(ed.), Addison Wesley, New York, 614p.
  24. Yi, M.J., Kim, G.B., Shon, Y.C., Lee, J.Y. and Lee, K.K. (2004) Time series analysis of groundwater level data obtained from national groundwater monitoring stations. Journal of the Geological Socitey of Korea, v.40, p.305-329.
  25. Yi, M.J. and Lee, K.K. (2004) Transfer function-noise modeling of irregularly observed groundwater heads using precipitation data. Journal of Hydrology, v.288, p.272-287. https://doi.org/10.1016/j.jhydrol.2003.10.020