Pre-Service Teachers' Understanding of Contexts for Constructing Exponential Graph

지수함수 그래프의 구성 맥락에 대한 예비교사들의 이해

  • Received : 2017.07.07
  • Accepted : 2017.08.11
  • Published : 2017.08.31

Abstract

This study examined the understanding of 24 pre-service teachers about the three contexts for constructing the exponential graphs. The three contexts consisted of the infinite points context (2009 revision curriculum textbook method), the infinite straight lines context (French textbook method), and the continuous compounding context (2015 revision curriculum textbook method). As the result of the examination, most of the pre-service teachers selected the infinite points context as easier context for introducing the exponential graph. They noted that it was the appropriate method because they thought their students would easily understand, but they showed the most errors in the graph presentation of this method. These errors are interpreted as a lack of content knowledge. In addition, a number of pre-service teachers noted that the infinite straight lines context and continuous compounding context were not appropriate because these contexts can aggravate students' difficulty in understanding. What they pointed out was interpreted in terms of knowledge of content and students, but at the same time those things revealed a lack of content knowledge for understanding the continuous compounding context. In fact, considering the curriculum they have experienced, they were not familiar with this context, continuous compounding. These results suggest that pre-service teacher education should be improved. Finally, some of the pre-service teachers mentioned that using technology can help the students' difficulties because they considered the design of visual model.

본 연구에서는 예비수학교사 24명을 대상으로 지수함수 맥락에서 지수함수의 그래프를 어떻게 구성하는지와 각 맥락의 교수학적 적절성에 대해서 어떻게 판단하는지를 살펴보았다. 제시된 지수함수 맥락은 무수히 많은 점을 이용하는 맥락과 무수히 많은 직선을 이용하는 맥락, 무한히 지급되는 이자 맥락이었다. 연구 결과, 예비교사들은 단계별로 그래프의 개형을 제시하는 과제에서 유한개의 점에 대한 그래프의 극한이라는 아이디어 A에서 가장 높은 이해도를 나타낸 반면에 한 점에서의 변화율과 함숫값이 비례한다는 아이디어 B와 연속 복리 개념이 내포된 아이디어 C를 사용한 그래프 구성에는 어려움을 나타내었다. 지수함수 그래프 구성 맥락이 적절한가에 대한 판단은 예비교사들의 내용교수지식에, 부적절하다는 판단은 수학의 내용지식 측면에 의존하는 경향이 나타났다. 예비교사들은 각 맥락에 따른 그래프를 구성하는 과정에서 나타나는 교수학적 조건과 상황을 언급하며 그래프 구성 맥락의 적절성을 주장한 반면에, 부적절성에 대해서는 각 맥락에 내포된 수학 개념의 본질과 논리적 관계들을 언급하였다.

Keywords

References

  1. 교육부(2015a). 2015개정 교육과정 총론.
  2. 교육부(2015b). 제2차 수학교육 종합 계획.
  3. 권오남, 박규홍, 이상구, 박제남, 주미경, 신준국, 김영록, 이재성, 장훈, 김지선, 박지현, 박정숙, 오혜미, 김영혜, 박윤근, 박상의, 전철 (2013). 고등학교 스토리텔링 모델교과서 개발. 한국과학창의재단 2013-8.
  4. 김민경, 박은정, 허지연(2012). '맥락성' 관점에서 본 수학교과서의 문제 분석. 한국학교수학회논문집, 15(1), 1-25.
  5. 김연식, 박교식(1992). 함수 개념 지도의 교수 현상학적 접근. 수학교육학연구, 2(1), 1-15.
  6. 김원경, 조민식, 방금성, 윤종국, 조정길, 이근주, 김기탁, 박수연, 박정숙, 박진호, 윤요섭, 정상일(2014). 미적분 2. 서울: 비상교육.
  7. 송정화, 권오남 (2002). 6차와 7차 교과서 분석을 통한 그래프 지도 방안. 학교수학, 4(2), 161-191.
  8. 신항균, 이광연, 박세원, 신범영, 이계세, 김정화, 박문환, 윤정호, 박상의, 서원호, 전제동, 이동흔(2014). 미적분 2. 서울: 지학사.
  9. 신항균, 황혜정, 이광연, 김화영, 조준모, 최화정, 윤기원(2013). 수학 3. 서울: 지학사.
  10. 우정호(1998). 학교 수학의 교육적 기초. 서울: 서울대학교출판부.
  11. 이화영, 류현아, 장경윤(2009). 함수의 그래프 표현 및 그래프 해석 지도 가능성 탐색 -초등학교 5학년을 중심으로-. 학교수학, 11(1), 131-145.
  12. 전홍기(2010). 투자와 금융수학. 서울: 교우사.
  13. 정상권, 이재학, 박혜숙, 홍진곤, 박부성, 최홍원, 민진원, 김호경(2014). 미적분 2. 서울: 금성출판사.
  14. 표진희(2010). 등비수열의 합에 관한 실생활 문제의 해결과정에서 나타난 오류 분석. 동국대학교 석사학위논문.
  15. Alagic, M., & Palenz, D. (2006). Teachers explore linear and exponential growth: Spreadsheets as cognitive tools. Journal of Technology and Teacher Education, 14(3), 633-649.
  16. Australian Ministerial Council on Education, Employment, Training and Youth Affairs. (2006). Statements of learning for mathematics. Carlton South Vic, AU: Curriculum Corporation.
  17. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What Makes It Special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
  18. Bernoulli, J. (1690). Quaestiones nonnullae de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685. Acta eruditorum, 219-223. Retrieved from https://books.google.co.kr/books?id=s4pw4GyHTRcC&pg=PA222&redir_esc=y#v=onepage&q&f=false.
  19. Beltramone, J. P., Brun, V., Labrosse, J., Merdy, C., Sidokpohou, O,, Talamoni, C., & Truchan, A. (2012). Declic Mathematiques TS. Hachetteeduction.
  20. Boyer, C. B. (1968). A History of Mathematics. John Wiley & Sons Inc.
  21. Castillo-Garsow, C. (2012). Continuous quantitative reasoning. In Mayes, R., Bonillia, R., Hatfield, L. L. & Belbase, S. (Eds.), Quantitative reasoning and mathematical modeling: A driver for STEM integrated education and teaching in context (pp. 55-73). WISDOMe Monographs, Volume 2. Laramie: University of Wyoming Press.
  22. Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: a framework and a study. Journal for Research in Mathematics Education, 33(5), 352-375. https://doi.org/10.2307/4149958
  23. Coulombe, W. N. & Berenson, S. B. (2001). Representations of Patterns and Functions Tools for Learning. In Cuoco, A. A. (Ed). The Roles of Representation in School Mathematics (2001 Yearbook). (pp. 166-172). Reston, VA: National Council of Teachers of Mathematics.
  24. Davis, J. (2009). Understanding the influence of two mathematics textbooks on prospective secondary teachers' knowledge. Journal of Mathematics Teacher Education, 12, 365-389. https://doi.org/10.1007/s10857-009-9115-2
  25. de Beer, H., Gravemeijer, K., & van Eijck, M. (2015). Discrete and continuous reasoning about change in primary school classrooms. ZDM Mathematics Education, 47, 981-996. https://doi.org/10.1007/s11858-015-0684-5
  26. Denzin, N. K. & Lincoln, Y. S. (1994). Handbook of qualitative research. Thousand Oaks, CA: Sage.
  27. de Lange, J. (1996). Mathematics education and assessment. Journal of the Association of Mathematics Education of South Africa, 42, 14-20.
  28. Demana, F., Schoen, H. L., & Waits, B. (1993). Impact of the graphing calculator, K-12. In Romberg, T.A., Fennema, E. & Carpenter, T.P. (Eds.), Integrating Research on The Graphical Representation of Function, 11-40.
  29. Ellis, A. B., Ozgur, Z., Kulow, T., Dogan, M. F., & Amidon, J. (2016). An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth Through Covariation. Mathematical Thinking and Learning, 18(3), 151-181. https://doi.org/10.1080/10986065.2016.1183090
  30. Ellis, A. B., Ozgur, Z., Kulow, T., Williams, C. C., & Amidon, J. (2015). Quantifying exponential growth: Three conceptual shifts in coordinating multiplicative and additive growth. Journal of Mathematical Behavior, 39, 135-155. https://doi.org/10.1016/j.jmathb.2015.06.004
  31. Finnish National Board of Education. (2004). National core curriculum for basic education 2004. Retrieved from http://www.oph.fi/english/publications/2009/national_core_curricula_for_basic_ education.
  32. Freudenthal, H. (1983). Didactical Phenomenology of mathematical structures. Dordrecht: D. Reidel Publishing Company.
  33. Freudenthal, H. (2008). 프로이덴탈의 수학교육론. (우정호, 정은실, 박교식, 유현주, 정영옥, 이경화 공역). 서울: 경문사. (원작은 1991년 출판).
  34. Haese, M., Haese, S., & Humphries, M. (2013). Mathematics for Australia 6: Australian curriculum. Marleston, SA: Haese Mathematics.
  35. Lappan, G., Fey, J., Fitzgerald, W., Friel, S., & Phillips, E.D. (2006). Connected Mathematics 2. Hilldale, NJ: Pearson Prentice Hall.
  36. Leinhardt, G., Zaslavsky, O., & Stein, M. K.(1990). Functions, graphs, and graphing : Tasks, Learning, and Teaching. Review of Educational Research, 60(1), 1-64. https://doi.org/10.3102/00346543060001001
  37. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Erlbaum.
  38. Maor, E. (2000). 오일러가 사랑한 수. (허민 역). 서울: 경문사. (영어 원작은 1994년 출판).
  39. O'Connor, J. J. & Robertson, E. F. (2001). The number e. St Andrews University. Retrieved from_http://www-history.mcs.st-and.ac.uk/HistTopics/e.html.
  40. Petraglia, J. (1998). Reality by design: The rhetoric and technology of authenticity in education. Mahwah, NJ: Erlbaum.
  41. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.2307/1175860
  42. Singapore Ministry of Education. (2006). Secondary mathematics syllabuses. Singapore: Author.
  43. Strom, A. (2008). A case study of a secondary mathematics teacher's understanding of exponential function: An emerging theoretical framework. Unpublished dissertation, Arizona State University. Retrieved from http://pat-thompson.net/PDFversions/Theses/2008Strom.pdf.
  44. Toeplitz, O. (2006). 퇴플리츠의 미분적분학. (우정호, 임재훈, 박경미 공역). 서울: 경문사. (영어 원작은 1963년 출판).
  45. Treffers, A. (1987). Three dimension. Dordrecht, Holland: Reidel Publishing Company.
  46. Weber, K. (2002). Students' understanding of exponential and logarithmic functions. Second International Conference on the Teaching of Mathematics (pp. 1-10). Crete, Greece: University of Crete.
  47. Yerushalmy, M., & Schwartz, J. L. (1993). Seizing the opportunity to make algebra mathematically and pedagogically Interesting. In Romberg, T. A., Fennema, E. & Carpenter, T. P. (Eds.), Integrating Research on The Graphical Representation of Function, 41-68.