DOI QR코드

DOI QR Code

An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation

  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Kim, Kyoo Young (GIFT, Pohang University of Science and Technology (POSTECH))
  • Received : 2017.06.13
  • Accepted : 2017.06.23
  • Published : 2017.08.31

Abstract

Development of high strength steel requires proper understanding of hydrogen behavior since the higher the steel strength the greater the susceptibility of hydrogen assisted cracking. This paper provides a brief but broad overview on hydrogen entry and transport behavior of high-strength ferritic steels. First of all, hydrogen absorption, diffusion and trapping mechanism of the steels are briefly introduced. Secondly, several experimental methods for analyzing the physical/chemical nature of hydrogen uptake and transport in the steels are reviewed. Among the methods, electrochemical permeation technique utilized widely for evaluating the hydrogen diffusion and trapping behavior in metals and alloys is mainly discussed. Moreover, a modified permeation technique accommodating the externally applied load and its application to a variety of steels are intensively explored. Indeed, successful utilization of the modified permeation technique equipped with a constant load testing device leads to significant academic progress on the hydrogen assisted cracking (HAC) phenomenon of the steels. In order to show how the external and/or residual stress affects mechanical instability of steel due to hydrogen ingress, the relationship among the microstructure, hydrogen permeation, and HAC susceptibility is briefly introduced.

Keywords

References

  1. F. E. Fujita, The iron-hydrogen phase diagram, in: R. A. Oriani, J. P. Hirth, M. Smialowski, Hydrogen degradation of ferrous alloys, p. 1, Noyes publications, New Jersey (1985).
  2. K. Kiuchi and R. B. Mclellan, Acta Metall., 31, 961 (1983). https://doi.org/10.1016/0001-6160(83)90192-X
  3. R. A. Oriani, Trans. Fusion. Tech., 26, 235 (1994).
  4. Y. Huang, A. Nakajima, A. Nishikata, and T. Tsuru, ISIJ Int., 43, 548 (2003). https://doi.org/10.2355/isijinternational.43.548
  5. S. J. Kim, H. G. Jung, and K. Y. Kim, Electrochim. Acta, 78, 139 (2012). https://doi.org/10.1016/j.electacta.2012.05.147
  6. Z. A. Iofa and F. L. Kam, Zashchita Metallov., 10, 17 (1974).
  7. A. Kawashima, K. Hashimoto, and S. Shimodaira, Corrosion, 32, 321 (1976). https://doi.org/10.5006/0010-9312-32.8.321
  8. G. T. Park, S. U. Koh, H. G. Jung, and K. Y. Kim, Corros. Sci., 50, 1865 (2008). https://doi.org/10.1016/j.corsci.2008.03.007
  9. H. Y. Liou, R. I. Shieh, F. I. Wei, and S. C. Wang, Corrosion, 49, 389 (1993). https://doi.org/10.5006/1.3316066
  10. C. Mendibide and T. Sourmail, Corros. Sci., 51, 2878 (2009). https://doi.org/10.1016/j.corsci.2009.08.013
  11. W. K. Kim. H. G. Jung, G. T. Park, S. U. Koh, and K. Y. Kim, Scripta Mater., 62, 195 (2010). https://doi.org/10.1016/j.scriptamat.2009.10.028
  12. E. Akiyama, K. Matsukado, S. Li, and K. Tsuzaki, App. Surf. Sci., 257, 8275 (2011). https://doi.org/10.1016/j.apsusc.2011.03.037
  13. K. H. So, J. S. Kim, Y. S. Chun, K. T. Park, Y. K. Lee, and C. S. Lee, ISIJ Int., 49, 1952 (2009). https://doi.org/10.2355/isijinternational.49.1952
  14. S. Li, Z. Zhang, E. Akiyama, K. Tsuzaki, and B. Zhang, Corros. Sci., 52, 1660 (2010). https://doi.org/10.1016/j.corsci.2010.02.005
  15. T. Tsuru, Y. Huang, M. R. Ali, and A. Nishikata, Corros. Sci., 47, 2431 (2005). https://doi.org/10.1016/j.corsci.2004.10.006
  16. T. Omura, T. Kudo, and S. Fujimoto, Mater. Trans., 47, 2956 (2006). https://doi.org/10.2320/matertrans.47.2956
  17. A. R. Troiano, Trans ASM., 52, 54 (1960).
  18. S. P. Lynch, Proc. NACE International Conf., p. 55, NACE, Nashville, USA (2007).
  19. C. Zapffe and C. Sims, Trans. AIME, 145, 225 (1941).
  20. S. Gahr, M. L. Grossbek, and H. K. Birnbaum, Acta Metall., 25, 125 (1977). https://doi.org/10.1016/0001-6160(77)90116-X
  21. N. J. Petch and P. Stable, Nature, 169, 842 (1952). https://doi.org/10.1038/169842a0
  22. W. Y. Choo and J. Y. Lee, Metall. Trans., 13A, 683 (1982).
  23. ISO Standard 3690, Determination of hydrogen in deposited weld metal arising from the use of covered electrodes for welding mild and low alloy steels (1977).
  24. JIS Standard Z3113, Method for measurement of hydrogen evolved from deposited metal (1975).
  25. M. A. V. Devanathan and Z. Stachurski, Proc. Royal. Soc., A270, 90 (1962).
  26. ISO Standard 17081, Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique (2004).
  27. M. Kurkela and R. M. Latanision, Scripta Mater. 13, 927 (1979). https://doi.org/10.1016/0036-9748(79)90322-3
  28. R. Otsuka and M. Isaji, Scripta Metall., 15, 1153 (1981). https://doi.org/10.1016/0036-9748(81)90178-2
  29. M. Hashimoto and R. M. Latanision, Theoretical study of hydrogen transport during plastic deformation in ironMetall. Trans., 19, 2789 (1988). https://doi.org/10.1007/BF02645813
  30. A. M. Brass and J. Chene, Corros. Sci., 48, 481 (2006). https://doi.org/10.1016/j.corsci.2005.01.007
  31. G. T. Park, H. G. Jung, S. U. Koh, and K. Y. Kim, 19th International Offshore and Polar Engineering (ISOPE) Conf., p. 268, ISOPE, Osaka, Japan (2009).
  32. M. Kurkela, G. S. Frankel, and R. M. Latanision, Scripta Mater., 16, 455 (1982). https://doi.org/10.1016/0036-9748(82)90172-7
  33. W. Beck, J. O'. M. Bockris, J. McBreen, and L. Nanis L, Proc. Royal. Soc., 290, 220 (1966). https://doi.org/10.1098/rspa.1966.0046
  34. K. T. Kim and S. I. Pyun, Scripta Metall., 22, 1719 (1988). https://doi.org/10.1016/S0036-9748(88)80272-2
  35. S. J. Kim and K. Y. Kim, Scripta Mater., 66, 1069 (2012). https://doi.org/10.1016/j.scriptamat.2012.03.001
  36. S. X. Xie and J. P. Hirth, Corrosion, 38, 486 (1982). https://doi.org/10.5006/1.3577364
  37. D. L. Johnson, G. Krauss, J. K. Wu, and K. P. Tang, Metall. Trans., 18A, 717 (1987).
  38. D. L. Johnson and J. -K. Wu, J. Mater. Ene. Sys., 8, 402 (1987). https://doi.org/10.1007/BF02833488
  39. H. W. Jeng, L. H. Chiu, D. L. Johnson, and J. K. Wu, Metall. Trans., 21A, 3257 (1990).
  40. M. I. Luppo and J. O-Garcia, Corros. Sci., 32, 1125 (1991). https://doi.org/10.1016/0010-938X(91)90097-9
  41. W. C. Luu and J. K. Wu, Corros. Sci., 38, 239 (1996). https://doi.org/10.1016/0010-938X(96)00109-6
  42. S. J. Kim, H. G. Jung, and K. Y. Kim, NACE International Conf., NACE-11292, NACE, Salt Lake City, Utah, USA (2012).
  43. S. J. Kim and K. Y. Kim, J. Weld. Join., 32, 13 (2014). https://doi.org/10.5781/JWJ.2014.32.5.13
  44. D. A. Jones, Principles and prevention of corrosion, 2nd ed., p. 86, Prentice Hall, NJ (1996).
  45. W. K. Kim, S. U. Koh, B. Y. Yang, and K. Y. Kim, Corros. Sci., 50, 3336 (2008). https://doi.org/10.1016/j.corsci.2008.09.030
  46. S. U. Koh, J. S. Kim, B. Y. Yang, and K. Y. Kim, Corrosion, 60, 244 (2004). https://doi.org/10.5006/1.3287728
  47. J. O'. M. Bockris, J. McBreen, and L. Nanis, J. Electrochem. Soc., 112, 1025 (1965). https://doi.org/10.1149/1.2423335
  48. P. W. Bolmer, Corrosion, 21, 69 (1965). https://doi.org/10.5006/0010-9312-21.3.69
  49. J. P. Hirth, Hydrogen-defect interactions, in: R. A. Oriani, J. P. Hirth, M. Smialowski, Hydrogen degradation of ferrous alloys, p. 131, Noyes publications, New Jersey (1985).
  50. J. P. Hirth, Metall. Trans., 11A, 861 (1980).
  51. A. J. Kumnick, H. H. Johnson, Acta Metall., 28, 33 (1980). https://doi.org/10.1016/0001-6160(80)90038-3
  52. I. Maroef, D. L. Olson, M. Eberhart, and G. R. Edwards, Mater. Rev., 47, 191 (2002). https://doi.org/10.1179/095066002225006548
  53. M. I. Luppo and J. Ovejero-Garcia, Corros. Sci., 32, 1125 (1991). https://doi.org/10.1016/0010-938X(91)90097-9
  54. V. Olden, C. Thaulow, and R. Johnsen, Mater. Des., 29, 1934 (2008). https://doi.org/10.1016/j.matdes.2008.04.026
  55. J. L. Lee and J. Y. Lee, Metall. Trans., 17A, 2183 (1986).
  56. S. Serna S, H. Martinez, S. Y. Lopez, J. G. Gonzalez-Rodriguez, and J. L. Albarran, Int. J. Hydro. Ene., 30, 1333 (2005). https://doi.org/10.1016/j.ijhydene.2005.04.012
  57. G. M. Pressouyre and I. M. Bernstein, Metall. Trans., 12A, 835 (1981).
  58. G. W. Hong and J. Y. Lee, J. Mater. Sci., 18, 271 (1983). https://doi.org/10.1007/BF00543835
  59. S. K. He, G. S. Wang, and S. N. Wang, Acta Metall. Sinica., 9, 619 (1996).
  60. T. Asaoka, C. Dagbert, M. Aucouturier, and J. Galland, Scripta Mater., 11, 467 (1977). https://doi.org/10.1016/0036-9748(77)90158-2
  61. L. Tau L, S. L. I. Chan SLI, and C. S. Shin, Corros. Sci., 38, 2049 (1996). https://doi.org/10.1016/S0010-938X(96)89123-2
  62. D. L. Johnson, G. Krauss, J. K. Wu, and K. P. Tang, Metall. Trans., 18A, 717 (1987).
  63. Y. D. Park, I. S. Maroef, A. Landau, and D. L. Olson, Weld. Res., 81, 27 (2002).
  64. T. Bollinghaus, H. Hoffmeister, and C. Middel, Weld. in the World, 37, 16 (1996).
  65. J. H. Ryu, Y. S. Chun, C. S. Lee, H. K. D. H. Bhadeshia, and D. W. Suh, Acta Mater., 60, 4085 (2012). https://doi.org/10.1016/j.actamat.2012.04.010
  66. R. Gibala and J. Kumnick, Hydrogen trapping in iron and steels, in: R. Gibala, R. F. Hehemann, Hydrogen embrittlement and stress corrosion cracking, p. 61, ASM Int., OH, (1984).
  67. H. H. Podgurski and R. A. Oriani, Metall. Trans., 3, 2055 (1972). https://doi.org/10.1007/BF02643214
  68. P. Lacombe, M. Aucouturier, J. P. Laurent, and G. L. Passet, Proc. NACE International Conf., p. 423, NACE, Houston, TX (1977).
  69. E. Chrnet and R. W. Coughlin, J. Catalysis, 27, 246 (1972). https://doi.org/10.1016/0021-9517(72)90266-7
  70. J. L. Lee and J. Y. Lee, Metal. Sci., 17, 426 (1983). https://doi.org/10.1179/030634583790420619
  71. H. G. Lee and J. Y. Lee, Acta Metall., 32, 131 (1984). https://doi.org/10.1016/0001-6160(84)90210-4
  72. D. J. Kotecki and R. A. La Fave, Weld. J., 64, 31 (1985).
  73. I. L. Stern, I. Kalinsky, and E. A. Fenton, Weld. J., 28, 405 (1949).
  74. F. Coe, Metal Const., 18, 20 (1986).
  75. G. K. Padhy and Y. Komizo, Trans. JWRI., 42, 39 (2013).
  76. M. Koyama, H. Springer, S. V. Merzlikin, K. Tsuzaki, E. Akiyama, and D. Raabe, Int. J. Hyd. Ene., 39, 4634 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.171
  77. H. E. Kissinger, Anal. Chem., 29, 1702 (1957). https://doi.org/10.1021/ac60131a045
  78. A. Cornish-Bowden, Fundamentals of enzyme kinetics, p. 4, Wiley-VCH VerlagGmbH & Co., Berlin, Germany (2012).
  79. E. J. Song, D. W. Suh, and H. K. D. H. Bhadeshia, Comp. Mater. Sci., 79, 36 (2013). https://doi.org/10.1016/j.commatsci.2013.06.008
  80. D. Perez Escobar, T. Depover, L. Duprez, K. Verbeken, and M. Verhaege, Acta Mater., 60, 2593 (2012). https://doi.org/10.1016/j.actamat.2012.01.026
  81. H. M. Ha, J. H. Ai, and J. R. Scully, Corrosion, 70, 166 (2014). https://doi.org/10.5006/0990
  82. Y. S. Chun, J. S. Kim, K. T. Park, Y. K. Lee, and C. S. Lee, Mater. Sci. Eng., 533A, 87 (2012).
  83. G. Lovicu, M, Barloscio, M. Bottazzi, F. D'Aiuto, M. De Sanctis, A. Dimatteo, C. Federici, S. Maggi, C. Santus, and R. Valentini, 2nd Super-High Strength Steels Conf., Verona, Italy (2010).
  84. E. W. Johnson and M. L. Hill, Trans. AIME., 218, 1104 (1960).
  85. C. Wert and C. Zener, Phy. Rev., 76, 1169 (1949). https://doi.org/10.1103/PhysRev.76.1169
  86. J. Kittel, F. Ropital, and J. Pellier, NACE International Conf., NACE-08409, NACE, Houston, TX, USA (2008).
  87. T. Zakroczymski, Electrochim. Acta, 51, 2261 (2006). https://doi.org/10.1016/j.electacta.2005.02.151
  88. S. H. Wang, W. C. Luu, K. F. Ho, and J. K. Wu, Mater. Chem. Phy., 77, 447 (2002).
  89. S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre, and H. Marchebois, Mater. Sci. Eng., A534, 384 (2012).
  90. W. C. Luu and J. K. Wu, Corros. Sci., 38, 239 (1996). https://doi.org/10.1016/0010-938X(96)00109-6
  91. A. M. Brass and J. Chene, Mater. Sci. Eng., A242, 210 (1998).
  92. S. J. Kim, H. S. Suh, and K. Y. Kim, Met. Mater. Int., 21, 666 (2015). https://doi.org/10.1007/s12540-015-4637-x
  93. A. Turnbull, M. W. Carroll, and D. H. Ferriss, Acta Metall., 37, 2039 (1989). https://doi.org/10.1016/0001-6160(89)90089-8
  94. S. J. Kim, D. W. Yun, H. G. Jung, and K. Y. Kim, J. Electrochem. Soc., 161, E173 (2014). https://doi.org/10.1149/2.1021412jes
  95. A. J. Kumnick and H. H. Johnson, Metall. Trans., 5, 1199 (1974). https://doi.org/10.1007/BF02644334
  96. P. Manolatos, M. Jerome, and J. Galland, Electrochim. Acta, 40, 867 (1995). https://doi.org/10.1016/0013-4686(94)00343-Y
  97. J. B. Leblond JB and D. Dubois, Acta Metall., 31, 1459 (1983). https://doi.org/10.1016/0001-6160(83)90142-6
  98. P. Bastien and P. Azou, C. R. Acad. Sci. Paris., 232, 1845 (1951).
  99. G. S. Frankel and R. M. Latanision, Metall. Trans., 17A, 869 (1986).
  100. T. Zakroczymski, Corrosion, 41, 485 (1985). https://doi.org/10.5006/1.3583831
  101. C. B. Zheng, H. K. Jiang, and Y. L. Huang, Corros. Eng. Sci. Tech., 46, 365 (2011). https://doi.org/10.1179/147842209X12559428167689
  102. H. E. Townsend, Corrosion, 26, 361 (1970). https://doi.org/10.5006/0010-9312-26.9.361
  103. S. J. Kim, D. W. Yun, D. W. Suh, and K. Y. Kim, Electrochem.Comm., 24, 112 (2012). https://doi.org/10.1016/j.elecom.2012.09.002
  104. S. J. Kim, H. G. Jung, and K. Y. Kim, Proc. NACE International Conf., NACE-2012-1204, NACE, San Antonio, TX, USA (2011).

Cited by

  1. MXene Coatings: Novel Hydrogen Permeation Barriers for Pipe Steels vol.11, pp.10, 2017, https://doi.org/10.3390/nano11102737