DOI QR코드

DOI QR Code

Evaluation of the Performance of Multi-binders (lime, DAP and ladle slag) in Treating Metal(loid)s-contaminated Soils

중금속류 오염 토양 처리를 위한 복합 고화제(lime, DAP, 래들 슬래그) 성능 평가

  • Choi, Jiyeon (School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Shin, Won Sik (School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University)
  • 최지연 (경북대학교 건설환경에너지공학부) ;
  • 신원식 (경북대학교 건설환경에너지공학부)
  • Received : 2017.06.08
  • Accepted : 2017.07.19
  • Published : 2017.08.31

Abstract

Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.

Keywords

References

  1. Allison, L. E., 1960, Wet-combustion apparatus and procedure for organic and inorganic carbon in soil, Soil Sci. Soc. Am. Proc., 24, 36-40. https://doi.org/10.2136/sssaj1960.03615995002400010018x
  2. Appel, C., Ma, L. Q., Rhue, R. D., 2003, Kenelley E., Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility, Geoderma, 113, 77-93. https://doi.org/10.1016/S0016-7061(02)00316-6
  3. Bade, R., Oh, S., Shin, W. S., 2012, Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment, Ecotoxicol. Environ. Saf., 80, 299-307. https://doi.org/10.1016/j.ecoenv.2012.03.019
  4. Basta, N. T., McGowen, S. L., 2004, Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil, Environ. Pollut., 127, 73-82. https://doi.org/10.1016/S0269-7491(03)00250-1
  5. Brallier, S., Harrison, R. B., Henry, C. L., Dongsen, X., 1996, Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously, Water, Air, Soil Pollut., 86, 195-206. https://doi.org/10.1007/BF00279156
  6. Burrows, J. E., Peters, S. C., 2013, Metal mobility due to storm events on an impacted hillslope in Palmerton, PA, Appl. Geochem., 31, 52-59. https://doi.org/10.1016/j.apgeochem.2012.12.005
  7. Cao, X., Wahbi, A., Ma, L., Li, B., Yang, Y., 2009, Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid, J. Hazard. Mater., 164, 555-564. https://doi.org/10.1016/j.jhazmat.2008.08.034
  8. Chrysochoou, M., Dermatas, D., Grubb, D. G., 2007, Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate, J. Hazard. Mater., 144, 1-14. https://doi.org/10.1016/j.jhazmat.2007.02.008
  9. Conesa, H. M., Wieser, M., Gasser, M., Hockmann, K., Evangelou, M. W. H., Studer, B., Schulin, R., 2010, Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils, J. Hazard. Mater., 181, 845-850. https://doi.org/10.1016/j.jhazmat.2010.05.090
  10. Falamaki, A., Tavallali, H., Eskandari, M., Farahmand, S. R., 2016, Immobilizing some heavy metals by mixing contaminated soils with phosphate admixtures, Int. J. Civil Eng., 14, 75-81. https://doi.org/10.1007/s40999-016-0006-5
  11. Garcia, M. A., Chimenos, J. M., Fernandez, A. I., Miralles, L., Segarra, M., Espiell, F., 2004, Low-grade MgO used to stabilize heavy metals in highly contaminated soils, Chemosphere, 56, 481-491. https://doi.org/10.1016/j.chemosphere.2004.04.005
  12. Grubb, D. G., Wazne, M., Jagupilla, S. C., Malasavage, N. E., 2011, Beneficial use of steel slag fines to immobilize arsenite and arsenate: slag characterization and metal thresholding studies, J. Hazard. Toxic Radioact. Waste, 15, 130-150. https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000077
  13. He, M., Shi, H., Zhao, X., Yu, Y., Qu, B., 2013, Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite, Procedia Environ. Sci., 18, 657-665. https://doi.org/10.1016/j.proenv.2013.04.090
  14. Jeong, T.-H., NamKoong, W., 2012, Effect of steel slag addition on immobilization of heavy metal-contaminated soil with phosphate, J. Korean Soc. Environ. Eng., 29, 769-776.
  15. Kim, C. E., 2011, Immobilization of heavy metals in contaminated sites using ladle slag, M.D., Kyungpook National University, Daegu, Korea.
  16. Kim, E. H., Cho, J. K., Yim, S., 2005, Digested sewage sludge solidification by converter sludge for landfill cover, Chemosphere, 59, 387-395. https://doi.org/10.1016/j.chemosphere.2004.10.038
  17. Kim, K. R., Park, J. S., Kim, M. S., Koo, N., Lee, S. H., Lee, J. S., Kim, S. C., Yang, J. E., Kim, J. G., 2010, Changes in heavy metal phytoavailability by application of immobilizing agents and soil cover in the upland soil nearby abandoned mining area and subsequent metal uptake by red pepper, Korean J. Soil Sci. Fert., 43, 864-871.
  18. Kim, M. S., Koo, N., Kim, J. G., Yang, J. E., Lee, J. S., Bak, G. I., 2012, Effects of soil amendments on the early growth and heavy metal accumulation of Brassica campestris ssp. Chinensis Jusl. in heavy metalcontaminated soil, Korean. J. Soil Sci. Fert., 45, 961-967. https://doi.org/10.7745/KJSSF.2012.45.6.961
  19. Kogbara, R. B., Al-Tabbaa, A., 2011, Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil, Sci. Total Environ., 409, 2325-2335. https://doi.org/10.1016/j.scitotenv.2011.02.037
  20. Kostarelos, K., Reale, D., Dermatas, D., Rao, E., Moon, D. H., 2006, Optimum dose of lime and fly ash for treatment of hexavalent chromium-contaminated soil, Water, Air, Soil Pollut., 6, 171-189. https://doi.org/10.1007/s11267-005-9005-2
  21. Kumpiene, J., Lagerkvist, A., Maurice, C., 2008, Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A Review, Waste Manag., 28, 215-225. https://doi.org/10.1016/j.wasman.2006.12.012
  22. Lee, M. H., Jeon, J. H., 2010, Study for the stabilization of arsenic in the farmland soil by using steel making slag and limestone, Econ. Environ. Geol., 43, 305-314.
  23. Lee, S., 2006, Geochemistry and parting of trace metals in paddy soils affected by metal mine tailings in Korea, Geoderma, 135, 26-37. https://doi.org/10.1016/j.geoderma.2005.11.004
  24. Lee, T. M., Lai, H. Y., Chen, Z. S., 2004, Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils, Chemosphere, 57, 1459-1471. https://doi.org/10.1016/j.chemosphere.2004.08.094
  25. Lim, J. E., Ahmad, M., Usman, A. R., Lee, S. S., Jeon, W. T., Oh, S. E., Ok, Y. S., 2013, Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil, Environ. Earth Sci., 69, 11-20. https://doi.org/10.1007/s12665-012-1929-z
  26. Lim, J. E., Kim, K. R., Lee, S. S., Kwon, O. K., Yang, J. E., Ok, Y. S., 2010, Stabilization of As (arsenic(V) or roxarsone) contaminated soils using zerovalent iron and basic oxygen furnace slag, J. Korean Soc. Environ. Eng., 32, 631-638.
  27. Melamed, R., Cao, X., Chen, M., Ma, L. Q., 2003, Field assessment of lead immobilization in a contaminated soil after phosphate application, Sci. Total Environ., 305, 117-127. https://doi.org/10.1016/S0048-9697(02)00469-2
  28. Mine Reclamation Corp., 2016, Yearbook of MIRECO statistics. 2015, Seoul.
  29. Ministry of Environment, 2013, Korean ministry of environment standard, Sejong, Korea.
  30. Ministry of Environment, 2016, Soil monitoring network and soil pollution survey result of 2014, Sejong, Korea.
  31. Moon, D. H., Kim, K. Y., Yoon, I. H., Grubb, D. G., Shin, D. Y., Cheong, K. H., 2011, Stabilization of arsenic-contaminated mine tailings using natural and calcined oyster shells, Environ. Earth Sci., 64, 597-605. https://doi.org/10.1007/s12665-010-0890-y
  32. Moon, D. H., Oh, D.-Y., Lee, S. J., Park, J.-H., 2010, Stabilization of as contaminated soils using a combination of hydrated lime, portland cement, $FeCl_3{\cdot}6H_2O$ and NaOH, Korean J. Environ. Agric., 28, 47-53.
  33. Ownby, D. R., Galvan, K. A., Lydy, M. J., 2005, Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils, Environ. Pollut., 136, 315-321. https://doi.org/10.1016/j.envpol.2004.12.033
  34. Rha, C. Y., Kang, S. K., Kim, C. E., 2000, Investigation of the stability of hardened slag paste for the stabilization/solidification of wastes containing heavy metal ions, J. Hazard. Mater., 73, 255-267. https://doi.org/10.1016/S0304-3894(99)00185-5
  35. Son, J. H., Roh, H., Lee, S. Y., Kim, G. H., Park, J. K., Yang, J. K., Chang, Y. Y., 2009, Stabilization of heavy metal contaminated paddy soils near abandoned mine with steel slag and CaO, J. Soil Groundw. Environ., 14, 78-86.
  36. USEPA, Method 1311: Toxicity characteristic leaching procedure, In: test methods for the evaluation of solid waste: Laboratory manual physical chemical methods. SW-846, Office of Solid Waste, Washington, DC, 1992.
  37. USEPA, Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils, In: test methods for the evaluation of solid waste: Laboratory manual physical chemical methods. SW-846, Office of Solid Waste, Washington, DC, 2007.
  38. USEPA, Method 9081: Cation-exchange capacity (sodium acetate), In: Test methods for the evaluation of solid waste: Laboratory manual physical chemical methods. SW-846, Office of Solid Waste, Washington, DC, 1986.
  39. Wang, Y. M., Chen, T. C., Yeh, K. J., Shue, M. F., 2001, Stabilization of an elevated heavy metal contaminated site, J. Hazard. Mater., 88, 63-74. https://doi.org/10.1016/S0304-3894(01)00289-8
  40. Warren, G. P., Alloway, B. J., Lepp, N. W., Singh, B., Bochereau, F. J., Penny, C., 2003, Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides, Sci. Total Environ., 311, 19-33. https://doi.org/10.1016/S0048-9697(03)00096-2
  41. Yang, J. W., Lee, Y. J., 2007, Status of soil remediation and technology development in Korea, Korean Chem. Eng. Res., 45, 311-318.
  42. Zemberyova, M., Bartekova, J., Hagarova, I., 2006, The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins, Talanta, 70, 973-978. https://doi.org/10.1016/j.talanta.2006.05.057
  43. Zhao, H., Levi, C. G., Wadley, H. N. G., 2014, Molten silicate interactions with thermal barrier coatings, Surf. Coat. Tech., 251, 74-86. https://doi.org/10.1016/j.surfcoat.2014.04.007