DOI QR코드

DOI QR Code

Pulsed electric field pasteurization of mandarin and carrot juices

Pulsed electric field 공정을 이용한 감귤 주스와 당근 주스 살균

  • Received : 2017.03.30
  • Accepted : 2017.05.15
  • Published : 2017.08.31

Abstract

Effects of pulsed electric field (PEF) processing on growth inhibition of indigenous aerobic microorganisms and the quality of mandarin and carrot juices were investigated. Mandarin juice was PEF-treated at 15-23 kV/cm for $23-241{\mu}s$, whereas carrot juice was treated at 13-14 kV/cm for 127-198 s. At $25^{\circ}C$ (inlet temperature), PEF treatments at 23 kV/cm for $104{\mu}s$ and 14 kV/cm for $198{\mu}s$ reduced the numbers of total mesophilic aerobes by $6.3{\pm}0.8$ and $5.5{\pm}0.9{\log}\;CFU/mL$ in mandarin juice and carrot juice, respectively. Elevation of inlet temperature to $40^{\circ}C$ increased the reduction rates in both juices. In general, the treatments resulting in the highest microbial inhibition at 25 and $40^{\circ}C$ did not alter the physicochemical and nutritional properties of both juices (p>0.05). PEF is a feasible technology to pasteurize mandarin and carrot juices commercially, with minimal quality deterioration.

본 연구에서는 PEF 처리 시간과 전기장 세기가 증가할수록 주스 내 토착 미생물 저해 효과가 상승함을 알 수 있었고, 또한 처리 주스의 주입 온도를 높여 $40^{\circ}C$에서 PEF 처리했을 때 살균 효과가 높아짐을 확인하였다. 상온 PEF와 중온 PEF 처리 모두 감귤 주스와 당근 주스의 이화학적 영양학적 특성에 크게 영향을 주지 않으면서도 상업적 살균에 적합한 미생물 저해 효과를 보여주었다. 본 연구는 파일럿 규모의 PEF 처리 장비를 이용하여 감귤 주스와 당근 주스를 살균하지 않은 주스의 품질을 유지하면서 살균할 수 있음을 보여주었다. 처리 시간, 전기장 세기, 그리고 주입 온도의 조절을 통해 최소의 에너지 사용으로 품질 보존과 동시에 최대의 미생물 저해 효과를 얻는 PEF 살균 공정 최적화가 다양한 주스 제품에 대하여 이루어 질 수 있을 것으로 전망한다.

Keywords

References

  1. Beltran-Gonzalez F, Perez-Lopez AJ, Lopez-Nicolas JM, Carbonell-Barrachina AA. Effects of agricultural practices on instrumental colour, mineral content, carotenoid composition, and sensory quality of mandarin orange juice, cv. Hernandina. J. Sci. Food Agric. 88: 1731-1738 (2008) https://doi.org/10.1002/jsfa.3272
  2. Martinez-Flores HE, Garnica-Romo MG, Bermudez-Aguirre D, Pokhrel PR, Barbosa-Canovas GV. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage. Food Chem. 172: 650-656 (2015) https://doi.org/10.1016/j.foodchem.2014.09.072
  3. Min S, Jin Z, Min S, Yeom H, Zhang Q. Commercial-scale pulsed electric field processing of orange juice. J. Food Sci. 68: 1265-1271 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb09637.x
  4. Xiang B, Sundararajan S, Mis Solval K, Espinoza-Rodezno L, Aryana K, Sathivel S. Effects of pulsed electric fields on physicochemical properties and microbial inactivation of carrot juice. J. Food Process. Preserv. 38: 1556-1564 (2014) https://doi.org/10.1111/jfpp.12115
  5. Vervoort L, Van der Plancken I, Grauwet T, Timmermans RA, Mastwijk HC, Matser AM, Hendrickx ME, Van Loey A. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters. Innov. Food Sci. Emerg. Technol. 12: 466-477 (2011) https://doi.org/10.1016/j.ifset.2011.06.003
  6. Rivas A, Rodrigo D, Martnez A, Barbosa-Canovas G, Rodrigo M. Effect of PEF and heat pasteurization on the physicalchemical characteristics of blended orange and carrot juice. LWT-Food Sci. Technol. 39: 1163-1170 (2006) https://doi.org/10.1016/j.lwt.2005.07.002
  7. Lee PY, Lusk K, Mirosa M, Oey I. Effect of information on Chinese consumers' acceptance of thermal and non-thermal treated apple juices: A study of young Chinese immigrants in New Zealand. Food Qual. Prefer. 48: 118-129 (2016) https://doi.org/10.1016/j.foodqual.2015.09.002
  8. Lee SJ, Shin JK. Intra- and extra-cellular mechanisms of Saccharomyces cerevisiae inactivation by high voltage pulsed electric fields treatment. Korean J. Food Sci. Technol. 47: 87-94 (2015) https://doi.org/10.9721/KJFST.2015.47.1.87
  9. Altuntas J, Evrendilek GA, Sangun MK, Zhang HQ. Effects of pulsed electric field processing on the quality and microbial inactivation of sour cherry juice. Int. J. Food Sci. Technol. 45: 899-905 (2010) https://doi.org/10.1111/j.1365-2621.2010.02213.x
  10. Saldana G, Puertolas E, Monfort S, Raso J, Alvarez I. Defining treatment conditions for pulsed electric field pasteurization of apple juice. Int. J. Food Microbiol. 151: 29-35 (2011) https://doi.org/10.1016/j.ijfoodmicro.2011.07.033
  11. Milani EA, Alkhafaji S, Silva FV. Pulsed electric field continuous pasteurization of different types of beers. Food Control. 50: 223-229 (2015) https://doi.org/10.1016/j.foodcont.2014.08.033
  12. Min S, Jin ZT, Zhang QH. Commercial scale pulsed electric field processing of tomato juice. J. Agric. Food Chem. 51: 3338-3344 (2003) https://doi.org/10.1021/jf0260444
  13. Jin TZ, Guo M, Zhang HQ. Upscaling from benchtop processing to industrial scale production: More factors to be considered for pulsed electric field food processing. J. Food Eng. 146: 72-80 (2015) https://doi.org/10.1016/j.jfoodeng.2014.08.020
  14. Min S, Evrendilek GA, Zhang, HQ. Pulsed electric fields: Processing system, microbial and enzyme inhibition, and shelf life extension of foods. IEEE T. Plasma Sci. 35: 59-73 (2007) https://doi.org/10.1109/TPS.2006.889290
  15. Zhou L, Wang Y, Hu X, Wu J, Liao X. Effect of high pressure carbon dioxide on the quality of carrot juice. Innov. Food Sci. Emerg. Technol. 10: 321-327 (2009) https://doi.org/10.1016/j.ifset.2009.01.002
  16. Kim SL, Kim SK, Park CH. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 37: 319-327 (2004) https://doi.org/10.1016/j.foodres.2003.12.008
  17. Lin C, Chen B. Stability of carotenoids in tomato juice during storage. Food Chem. 90: 837-846 (2005) https://doi.org/10.1016/j.foodchem.2004.05.031
  18. Mestry AP, Mujumdar AS, Thorat BN. Optimization of spray drying of an innovative functional food: Fermented mixed juice of carrot and watermelon. Dry. Technol. 29: 1121-1131 (2011) https://doi.org/10.1080/07373937.2011.566968
  19. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  20. Zhao W, Yang R, Lu R, Wang M, Qian P, Yang W. Effect of PEF on microbial inactivation and physical-chemical properties of green tea extracts. LWT-Food Sci. Technol. 41: 425-431 (2008) https://doi.org/10.1016/j.lwt.2007.03.020
  21. Monfort S, Gayan E, Saldana G, Puertolas E, Condon S, Raso J, Alvarez I. Inactivation of Salmonella typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innov. Food Sci. Emerg. Technol. 11: 306-313 (2010) https://doi.org/10.1016/j.ifset.2009.11.007
  22. Calderon-Miranda ML, Barbosa-Canovas GV, Swanson BG. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk. Int. J. Food Microbiol. 51: 31-38 (1999) https://doi.org/10.1016/S0168-1605(99)00071-9
  23. Vega-Mercado H, Pothakamury UR, Chang F, Barbosa-Cnovas GV, Swanson BG. Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles. Food Res. Int. 29: 117-121 (1996) https://doi.org/10.1016/0963-9969(96)00015-4
  24. Wu Y, Mittal GS, Griffiths MW. Effect of pulsed electric field on the inactivation of microorganisms in grape juices with and without antimicrobials. Biosyst. Eng. 90: 1-7 (2005) https://doi.org/10.1016/j.biosystemseng.2004.07.012
  25. Ministry of Food and Drug Safety. Korean Food Standards Codex. Available from: http://www.foodsafetykorea.go.kr/foodcode/01_03.jsp?idx=40. Accessed Jan. 10, 2017
  26. Torregrosa F, Cortes C, Esteve MJ, Frigola A. Effect of highintensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids. J. Agr. Food Chem. 53: 9519-9525 (2005) https://doi.org/10.1021/jf051171w
  27. Cortes C, Esteve MJ, Frigola A. Color of orange juice treated by high intensity pulsed electric fields during refrigerated storage and comparison with pasteurized juice. Food Control 19: 151-158 (2008) https://doi.org/10.1016/j.foodcont.2007.03.001
  28. Akin E, Evrendilek GA. Effect of pulsed electric fields on physical, chemical, and microbiological properties of formulated carrot juice. Food Sci. Technol. Int. 15: 275-282 (2009) https://doi.org/10.1177/1082013209341414
  29. Bi X, Liu F, Rao L, Li J, Liu B, Liao X, Wu J. Effects of electric field strength and pulse rise time on physicochemical and sensory properties of apple juice by pulsed electric field. Innov. Food Sci. Emerg. Technol. 17: 85-92 (2013) https://doi.org/10.1016/j.ifset.2012.10.008
  30. Squires SR, Hanna JG. Concentration and stability of ascorbic acid in marketed reconstituted orange juice. J. Agr. Food Chem. 27: 639-41 (1979) https://doi.org/10.1021/jf60223a031
  31. Zulueta A, Barba FJ, Esteve MJ, Frigola A. Effects on the carotenoid pattern and vitamin A of a pulsed electric field-treated orange juicemilk beverage and behavior during storage. Eur. Food Res. Technol. 231: 525-534 (2010) https://doi.org/10.1007/s00217-010-1304-9
  32. Xu G, Liu D, Chen J, Ye X, Ma Y, Shi J. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem. 106: 545-551 (2008) https://doi.org/10.1016/j.foodchem.2007.06.046
  33. Patras A, Brunton N, Da Pieve S, Butler F, Downey G. Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purees. Innov. Food Sci. Emerg. Technol. 10: 16-22 (2009) https://doi.org/10.1016/j.ifset.2008.09.008
  34. Elez-Martinez P, Martin-Belloso O. Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chem. 102: 201-209 (2007) https://doi.org/10.1016/j.foodchem.2006.04.048