DOI QR코드

DOI QR Code

Evaluation of Impact Resistance for Concrete Median Barrier Depending on Vehicle Curb Weight, Concrete Cover Depth and Level of Deterioration

트럭 공차중량, 중앙분리대 피복두께 및 열화수준에 따른 중앙분리대 충돌해석모델의 민감도 분석

  • Lee, Jaeha (Department of Civil Engineering, Korean Maritime and Ocean University) ;
  • Lee, Ilkeun (Expressway & Transportation Research Institute) ;
  • Jeong, Yoseok (Research Institute for Construction Disaster Prevention, Chungnam National University) ;
  • Kim, Kyeongjin (Department of Civil and Environmental Engineering, Korean Maritime and Ocean University) ;
  • Kim, WooSeok (Department of Civil Engineering, Chungnam National University)
  • 이재하 (한국해양대학교 건설공학과) ;
  • 이일근 (한국도로공사 도로교통연구원) ;
  • 정유석 (충남대학교 건설방재연구소) ;
  • 김경진 (한국해양대학교 토목환경공학과) ;
  • 김우석 (충남대학교 토목공학과)
  • Received : 2017.06.19
  • Accepted : 2017.08.02
  • Published : 2017.08.31

Abstract

The concrete median barrier used currently in South Korea was developed the impact level of SB5-B(270kJ). However, the impact level of SB6(420kJ) should be considered in many placed with the increased accident of heavy vehicles. In order to increase the impact resistance of newly developed concrete median barrier, the computer simulation was conducted before real field test. For the accurate behavior of concrete, the parameter, such as impact vehicle, concrete cover depth and deterioration, was important. In this paper, a parametric study was conducted depending on vehicle curb weight, concrete cover depth and level of deterioration. The impact resistance of concrete median barrier was severely changed depending on vehicle curb weight and concrete cover depth. Furthermore, the impact resistance of concrete median barrier was also decreased due to deterioration of concrete, therefore the repair and rehabilitation should be conducted for damaged concrete depending on deterioration level. Therefore, vehicle curb weight, cover depth of concrete structures and deterioration level of concrete should be carefully considered for conducting analysis of concrete structure to vehicle collision.

국내 고속도로 콘크리트 중앙분리대는 SB5-B(270kJ)의 충돌등급에 저항하도록 설계되어 있다. 그러나 최근 대형 화물차량의 충돌사고가 지속적으로 증가하는 경향을 보이고 있어 SB6(420kJ) 등급으로의 상향이 필요하다. 충돌등급 상향을 위한 새로운 중앙분리대 단면을 제시하기 위해서는 실제 충돌시험을 수행하여 기준 통과여부를 결정하며, 충돌시험 수행을 위한 적정 단면을 제시하기 위해서는 충돌해석을 통해 선정한다. 이러한 충돌해석의 정확도 향상을 위해서는 차량 모델, 콘크리트 단면 열화상태, 콘크리트 피복 두께 등 다양한 변수에 대한 정확한 변수 선정이 필요하다. 따라서 본 연구에서는 공차 중량, 단면 열화, 콘크리트 피복 두께에 대한 변수연구를 수행하여 충돌저항성능 저감을 확인하였다. 전체 중량뿐만 아닌 공차 중량에 따라 중앙분리대의 충돌저항성능에 차이가 있는 것으로 확인되었으며, 10cm 이하의 콘크리트 피복 두께에서는 충돌저항성능이 민감하게 증가 또는 감소한다. 단면 열화가 발생할 경우 중앙분리대의 충돌저항성능의 감소가 발생하여 열화정도에 따른 보수 및 보강이 이루어져야 하는 것으로 판단된다. 따라서 콘크리트 구조물과 차량의 충돌해석을 수행할 경우 트럭의 공차중량 비율, 콘크리트의 피복두께 및 열화에 대한 영향이 상세하게 고려될 필요가 있음을 확인하였다.

Keywords

References

  1. Bazant, Z.P., Becq-Giraudon, E. (2002) Statistical Prediction of Fracture Parameters of Concrete and Implications for Choice of Testing Standard, Cement & Concr. Res., 32, pp.529-556. https://doi.org/10.1016/S0008-8846(01)00723-2
  2. CEB-FIP Model Code (1990) International Federation for Structural Concrete, Lausanne, Switzerland.
  3. CEB-FIP Model Code (2010) International Federation for Structural Concrete, Lausanne, Switzerland.
  4. Chung, C.H, Lee, J.W, Kim, S.Y., Lee, J.H. (2011) Influencing Factors on Numerical Simulation of Crash between RC Slab and Soft Projectile, J. Comput. Struct. Eng. Inst. Korea, 24(6), pp.591-600.
  5. Korea Expressway Corporation Research Institute (2016) Development of a New High-Functioning Concrete Median Barrier with Low Fragmentation in Impact Event: Final, Korea Expressway Corporation Research Institute Report, Korea Expressway Corporation, Korea.
  6. Korea Expressway Corporation Research Institute (2016) Technology Review Report - The Cause Analysis of Damage and Method for Maintenance of Concrete Median Barrier of the West Coast Highway in South Korea, Korea Expressway Corporation Research Institute Report, Korea Expressway Corporation, Korea.
  7. Kim, H., Kim, J., Kim, K. (2015) A Case Study of Deterioration of Bridge Structures by De-icing Salts Attack, Korea Institute for Structural Maintenance and Inspection Fall Conference 2015, Korea Institute for Structural Maintenance and Inspection Fall, pp.593-594.
  8. Kim, S., Jeon, S., Hong, K., Lee, M. (2011) Performance Evaluation of Composite Safety Barrier for Bridge by Vehicle Impact Simulation, J. Comput. Struct. Eng. Inst. Korea, pp.499-506.
  9. Korea Expressway Corporation (2015) 2014 Highway Traffic Volume Statistics, Korea Expressway Corporation.
  10. Korea Road Traffic Authority (2015) Traffic Accident Analysis System, http://taas.koroad.or.kr/
  11. Lee, J., Zi, G., Lee, I., Jeong, Y., Kim, K., Kim, W. (2017) Numerical Simulation on Concrete Median Barrier for Reducing Concrete Fragment Under Harsh Impact Loading of a 25-ton Truck, J. Eng. Mater. & Technolo., ASME, 139(2), pp.021015-1-021015-9. https://doi.org/10.1115/1.4035766
  12. Livermore Software Technology Corporation (LSTC) (2007) LS-DYNA Keyword User's Manual Volume I, Livermore Software Technology Corporation, California, U.S.A.
  13. Ministry of Land, Infrastructure and Transport (2015) Real Impact Test Guideline for Road Safety Guard 2015, Ministry of Land, Infrastructure and Transport, Korea.
  14. Murray, D.Y. (2007) USERS MANUAL FOR LS-DYNA CONCRETE MATERIAL MODEL 159, Federal Highway Administration, U.S. Department of Transportation, FHWA-HRT-05-062.
  15. Murray, D.Y., Abu-Odeh, A., Bligh, R. (2007) Evaluation of LS-DYNA Concrete Material Model 159, Federal Highway Administration, U.S. Department of Transportation, FHWA-HRT-05-063.
  16. Oh, H., Kim, Y., Sim, J., Oh, K. (2013) A Study on the Non-linear Analysis of Concrete Barrier Subjected by Vehicle Collision, J. KOSHAM, 13(5), pp.255-261.
  17. Olson, R.M., Post, E.R., Mcfarland, W.F. (1970) 13 Tentative Service Requirements for Bridge Rail Systems, NCHRPReport 86, Highway Research Board/National Research Council, National Academy Press, Washington, D.C., U.S.A.
  18. Swamy, R.N., Al-Asali, M.M. (1988) Engineering Properties fo Concrete Affected by Alkali-Silica Reaction, J. Mater. American Concr. Inst., 85(5), pp.367-374.