DOI QR코드

DOI QR Code

SHOCK ACCELERATION MODEL WITH POSTSHOCK TURBULENCE FOR GIANT RADIO RELICS

  • Kang, Hyesung (Department of Earth Sciences, Pusan National University)
  • Received : 2017.05.09
  • Accepted : 2017.06.13
  • Published : 2017.08.31

Abstract

We explore the shock acceleration model for giant radio relics, in which relativistic electrons are accelerated via diffusive shock acceleration (DSA) by merger-driven shocks in the outskirts of galaxy clusters. In addition to DSA, turbulent acceleration by compressive MHD modes downstream of the shock are included as well as energy losses of postshock electrons due to Coulomb scattering, synchrotron emission, and inverse Compton scattering off the cosmic background radiation. Considering that only a small fraction of merging clusters host radio relics, we favor a reacceleration scenario in which radio relics are generated preferentially by shocks encountering the regions containing low-energy (${\gamma}_e{\leq}300$) cosmic ray electrons (CRe). We perform time-dependent DSA simulations of spherically expanding shocks with physical parameters relevant for the Sausage radio relic, and calculate the radio synchrotron emission from the accelerated CRe. We find that significant level of postshock turbulent acceleration is required in order to reproduce broad profiles of the observed radio flux densities of the Sausage relic. Moreover, the spectral curvature in the observed integrated radio spectrum can be explained, if the putative shock should have swept up and exited out of the preshock region of fossil CRe about 10 Myr ago.

Keywords

References

  1. Akamatsu, H., vanWeeren, R. J., Ogrean, G. A., et al. 2015, Suzaku X-Ray Study of the Double Radio Relic Galaxy Cluster CIZA J2242.8+5301, A&AP, 582, 87 https://doi.org/10.1051/0004-6361/201425209
  2. Basu, K., Vazza, F., Erler, J., & Sommer, M. 2016, The Impact of SZ Effect on Cm-Wavelength (1-30 GHz) Observation of Galaxy Cluster Radio Relics, A&AP, 591, A142 https://doi.org/10.1051/0004-6361/201527726
  3. Brunetti, G., & Jones, T. W. 2014, Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission, Int. J. of Modern Physics D, 23, 30007
  4. Brunetti, G., & Lazarian, A. 2007, Compressible Turbulence in Galaxy Clusters: Physics and Stochastic Particle Reacceleration MNRAS, 378, 245 https://doi.org/10.1111/j.1365-2966.2007.11771.x
  5. Brunetti, G., & Lazarian, A. 2011, Particle Reacceleration by Compressible Turbulence in Galaxy Clusters: Effects of a Reduced Mean Free Path MNRAS, 412, 817
  6. Clarke, T. E., Randall S. W., Sarazin, C. L., et al. 2013, Chandra View of the Ultra-Steep Spectrum Radio Source in A2443: Merger Shock-Induced Compression of Fossil Radio Plasma?, ApJ, 772, 84 https://doi.org/10.1088/0004-637X/772/2/84
  7. de Gasperin, F., Ogrean, G. A., van Weeren, R. J., et al. 2015, Abell 1033: Birth of a Radio Phoenix, MNRAS, 448, 2197 https://doi.org/10.1093/mnras/stv129
  8. Donnert, J. M. F., Stroe, A., Brunetti, G., et al. 2016, Magnetic Field Evolution in Giant Radio Relics Using the Example of CIZA J2242.8+5301, MNRAS, 462, 2014 https://doi.org/10.1093/mnras/stw1792
  9. Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
  10. Ensslin, T. A. 1999, Radio Ghosts, in Ringberg Workshop on Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, ed. P. S. H. Bohringer, L. Feretti, MPE Report 271, 275
  11. Feretti, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, Clusters of Galaxies: Observational Properties of the Diffuse Radio Emission, A&A Rev, 20, 54 https://doi.org/10.1007/s00159-012-0054-z
  12. Fujita, Y., Takizawa, M., Yamazaki, R., Akamatsu, H., & Ohno, H. 2015, Turbulent Cosmic-Ray Reacceleration at Radio Relics and Halos in Clusters of Galaxies ApJ, 815,116 https://doi.org/10.1088/0004-637X/815/2/116
  13. Hong, E. W., Kang, H., & Ryu, D. 2015, Radio and X-Ray Shocks in Clusters Of Galaxies, ApJ, 812, 49 https://doi.org/10.1088/0004-637X/812/1/49
  14. Kang, H. 2011, Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock, JKAS, 44, 49
  15. Kang, H. 2015, Radio Emission from Weak Spherical Shocks in the Outskirts of Galaxy Clusters, JKAS, 48, 155
  16. Kang, H. 2016a, Reacceleration Model for the 'Toothbrush' Radio Relic, JKAS, 49, 83
  17. Kang, H. 2016b, Reacceleration Model for the 'Sausage' Radio Relic, JKAS, 49, 145 (Paper I)
  18. Kang, H., & Ryu, D. 2016, Reacceleration Model for Radio Relics with Spectral Curvature, ApJ, 823, 13 https://doi.org/10.3847/0004-637X/823/1/13
  19. Kang, H., Ryu, D., & Jones, T. W. 2012, Diffusive Shock Acceleration Simulations of Radio Relics, ApJ, 756, 97 https://doi.org/10.1088/0004-637X/756/1/97
  20. Kang, H., Ryu, D., & Jones, T.W. 2017, Shock Acceleration Model for the Toothbrush Radio Relic, ApJ, 840, 42 https://doi.org/10.3847/1538-4357/aa6d0d
  21. Ogrean, G. A., Bruggen, M., van Weeren, R., et al. 2014, Challenges to Our Understanding of Radio Relics: X-Ray Observations of the Toothbrush Cluster, MNRAS, 440, 3416 https://doi.org/10.1093/mnras/stu537
  22. Paul, S., Iapichino, L., Miniati, F., Bagchi, J., & Mannheim, K. 2011, Evolution of Shocks and Turbulence in Major Cluster Mergers, ApJ, 726, 17 https://doi.org/10.1088/0004-637X/726/1/17
  23. Pierrard, V., & Lazar, M. 2010, Kappa Distributions: Theory and Applications in Space Plasmas, SoPh, 265, 153
  24. Pinzke, A., Oh, S. P., & Pfrommer, C. 2013, Giant Radio Relics in Galaxy Clusters: Reacceleration of Fossil Relativistic Electrons?, MNRAS, 435, 1061 https://doi.org/10.1093/mnras/stt1308
  25. Ryu, D., & Vishniac, E. T. 1991, The Dynamic Instability of Adiabatic Blast Waves, ApJ, 368, 411 https://doi.org/10.1086/169706
  26. Sarazin C. L. 1999, The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission, ApJ, 520, 529 https://doi.org/10.1086/307501
  27. Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557 https://doi.org/10.1093/mnras/172.3.557
  28. Slee, O. B., Roy, A. L., Murgia, M., Andernach, H., & Ehle, M. 2001, Four Extreme Relic Radio Sources in Clusters of Galaxies, AJ, 122, 1172 https://doi.org/10.1086/322105
  29. Stroe, A., van Weeren, R. J., Intema, H. T., Rottgering, H. J. A., Bruggen, M., & Hoeft, M. 2013, Discovery of Spectral Curvature in the Shock Downstream Region: CIZA J2242.8+5301, A&AP, 555, 110 https://doi.org/10.1051/0004-6361/201321267
  30. Stroe, A., Rumsey, C., Harwood, J. J., van Weeren, R. J., Rottgering, H. J. A., et al. 2014b, The Highest Frequency Detection of a Radio Relic: 16 GHz AMI Observations of the 'Sausage' Cluster, MNRAS, 441, L41 https://doi.org/10.1093/mnrasl/slu045
  31. Stroe, A., Shimwell, T. W., Rumsey, C., et al. 2016, The Widest Frequency Radio Relic Spectra: Observations from 150 MHz to 30 GHz, MNRAS, 455, 2402 https://doi.org/10.1093/mnras/stv2472
  32. van Weeren, R. J., Brunetti, G., Bruggen, M., et al. 2016, LOFAR, VLA, and CHANDRA Observations of the Toothbrush Galaxy Cluster, ApJ, 818, 204 https://doi.org/10.3847/0004-637X/818/2/204
  33. van Weeren, R., Rottgering, H. J. A., Bruggen, M., & Hoeft, M. 2010, Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster, Science, 330, 347 https://doi.org/10.1126/science.1194293
  34. van Weeren, R., Bruggen, M., Rottgering, H. J. A., & Hoeft, M. 2011, Using Double Radio Relics to Constrain Galaxy Cluster Mergers: A Model of Double Radio Relics in CIZA J2242.8+5301, MNRAS, 418, 230 https://doi.org/10.1111/j.1365-2966.2011.19478.x
  35. Yan, H., & Lazarian, A. 2002, Scattering of Cosmic Rays by Magnetohydrodynamic Interstellar Turbulence, PhRvL, 89, 281102

Cited by

  1. Twin radio relics in the nearby low-mass galaxy cluster Abell 168 vol.477, pp.1, 2018, https://doi.org/10.1093/mnras/sty744
  2. Diffuse Radio Emission from Galaxy Clusters vol.215, pp.1, 2019, https://doi.org/10.1007/s11214-019-0584-z