DOI QR코드

DOI QR Code

아연결정유약의 결정 생성 및 제어를 위한 Zn2TiO4 활용 연구

Application of Zn2TiO4 for nucleation and control of willemite crystalline glaze

  • 이현수 (한양여자대학교 도예과)
  • Lee, Hyun-Soo (Depart. of Ceramic Art, Hanyang Women's University)
  • 투고 : 2017.07.03
  • 심사 : 2017.08.04
  • 발행 : 2017.08.31

초록

Anatase 형 $TiO_2$에 의해 저온에서 생성되는 $Zn_2TiO_4$는 willemite($Zn_2SiO_4$) 결정 전구체로 유약 내 willemite 생성에 매우 큰 영향을 준다. 안정적인 willemite 생성 및 위치 제어를 위해 $Zn_2TiO_4$를 활용하였다. 합성된 $Zn_2TiO_4$를 화장토(engobe)에 15 wt% 첨가하여 도포하면 유약 내에 결정의 생성과 위치를 조절할 수 있다. 발색제가 고용된 $Zn_2TiO_4$를 화장토에 적용하면 결정부분에만 발색효과를 얻을 수 있다. $Zn_2TiO_4$를 화장토(engobe)로 적용하면 한 번의 시유로 결정의 생성유무와, 위치, 색상 등을 임의로 조절할 수 있고 유약의 장식 효과를 높일 수 있다.

$Zn_2TiO_4$, which is a progenitor of zinc crystallization, plays a significant role in controlling the crystallization of willemite ($Zn_2SiO_4$) in forming glaze at low temperatures. Thus, $Zn_2TiO_4$ was used to formulate stable willemite and to gain structural control. When synthesized 15 wt% of $Zn_2TiO_4$ is added to engobe and then applied, it can manipulate its crystallization and location. Additionally, when colorant is added to $Zn_2TiO_4$ and then applied to engobe, the mixture's colorant effect can be shown at crystallization. Certain characteristics of synthesized $Zn_2TiO_4$ enable various engobes to be applied to clay bodies. With a single glazing, the crystallization, location, and color of the crystals can be discretionarily regulated.

키워드

참고문헌

  1. F.H. Norton, "The control of crystalline glazes", J. Ceram. Soc. Jpn. 20 (1937) 217. https://doi.org/10.1111/j.1151-2916.1937.tb19892.x
  2. E. Kato and H. Takashima, "Study on the structure of zinc opaque glazes", J. Ceram. Soc. Jpn. 15 (1965) 69.
  3. B. Karasu and S. Turan, "Effect of cobalt oxide and copper oxide additions to zinc-containing soft porcelain glazes", J. Eur. Ceram. Soc. 22 (2002) 1447. https://doi.org/10.1016/S0955-2219(01)00456-3
  4. H.S. Lee, "Effects of nucleating seeds on coloring of $Zn_2SiO_4$ crystal glazes", J. Korean Ceram. Soc. 52 (2015) 197. https://doi.org/10.4191/kcers.2015.52.3.197
  5. C.Y. Lee, H.S. Lee and K.H. Shin, "Effects of $ZrO_2$ on zinc crystalline glaze", Advanced Materials Research 716 (2013) 228. https://doi.org/10.4028/www.scientific.net/AMR.716.228
  6. H.S. Lee, "The effect of nucleating agent on $Zn_2SiO_4$ crystal glaze", J. Kor. Ceram. Soc. 50 (2013) 116. https://doi.org/10.4191/kcers.2013.50.2.116
  7. C.C. Lee, P. Shen and H.Y. Lu, "Formation of willemite from powder mixture with $TiO_2$ addition", J. Mater. Sci. 24 (1989) 3300. https://doi.org/10.1007/BF01139057
  8. A.W.A. El-Shennawi and A.A. Omar, "The roll of titania and titania mixtures in the nucleation and crystallization of spodumene-willemite-diopside glass", Thermochim. Acta 58 (1982) 125. https://doi.org/10.1016/0040-6031(82)87077-9
  9. T. Santhaveesuk, D. Wongratanaphisan, N. Mangkorntong and S. Choopun, "$Zn_2TiO_4$ nanostructures prepared by thermal oxidation method", Adv. Mat. Res. 55-57 (2008) 641. https://doi.org/10.4028/www.scientific.net/AMR.55-57.641
  10. L. Hou, Y. Hou, M. Zhu, J. Tang, J. Liu, H. Wang and H. Yan, "Formation and transformation of $ZnTiO_3$ prepared by sol-gel process", Mater. Lett. 59 (2005) 197. https://doi.org/10.1016/j.matlet.2004.07.046
  11. C.Y. Lee, H.S. Lee and K.H. Shin, "The effect of $Zn_2TiO_4$ on willemite crystalline glaze", J. Kor. Crystal Growth and Crystal Technology 24 (2014) 70. https://doi.org/10.6111/JKCGCT.2014.24.2.070
  12. J.G. Ma, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, H.Y. Xu, J.Y. Zhang, Y.M. Lu, D.Z. Shen and X.W. Fan, "Preparation and characterization of ZnO particles embedded in $SiO_2$ matrix by reactive magnetron sputtering", J. Appl. Phys. 97 (2005) 103509 1. https://doi.org/10.1063/1.1897493
  13. C.Y. Lee and B.H. Lee, "A study of nucleation and growth in zinc crystal glaze by firing conditions (in Korean)", J. Kor. Ceram. Soc. 46 (2009) 253. https://doi.org/10.4191/KCERS.2009.46.3.253
  14. C.K. Lee and B.H. Lee, "Study on the crystal growth in ZnO-$Al_2O_3$-$SiO_2$", J. Kor. Ceram. Soc. 12 (1975) 19.
  15. A. Escardino, J.L. Amoros, A. Gozalbo, M.J. Orts and A. Moreno, "Gahmite diversification in ceramic frits: mechanism and process kinitics", J. Am. Ceram. Soc. 83 (2000) 2938. https://doi.org/10.1111/j.1151-2916.2000.tb01664.x
  16. R. Casasola, J.Ma. Rincon and M. Romero., "Glassceramics glazes for ceramic tiles - a review", J. Mater. Sci. 47 (2012) 553.
  17. S. Sorli, M.A. Tena, A. Mestre, M. Llusar and G. Monros, "Effect of the major devitrifying phase on ceramic glaze microstructure and mechanical properties", Ceramic Tile Quality; Qualicer 1 (2004) 99.
  18. L. Phan, R. Vincent, D. Cherns, N.X. Nghia and V.V. Ursaki, "Raman scattering in Me-doped ZnO nanorods (Me=Mn, Co, Cu and Ni) prepared by thermal diffusion", Nanotechnology 19 (2008) 475702 1. https://doi.org/10.1088/0957-4484/19/47/475702
  19. C. Luo, D. Li, W. Wu, Y. Zhang and C. Pan, "R Preparation of porous micro-nano-structure NiO/ZnO heterojunction and its photocatalytic property", RSC Adv. 4 (2014) 3090. https://doi.org/10.1039/C3RA44670K
  20. S. Singh and M.S. Ramachandra Rao, "Optical and electrical resistivity studies of isovalent and aliovalent 3d transition metal ion doped ZnO", Physical Review B 80 (2009) 45210 1. https://doi.org/10.1103/PhysRevB.80.045210
  21. G.J. Huang, J.B. Wang, X.L. Zhong, G.C. Zhou and H.L. Yan, "Synthesis, structure, and room-temperature ferromagnetism of Ni-doped ZnO nanoparticles", J. Mater. Sci. 42 (2007) 6464. https://doi.org/10.1007/s10853-006-1256-4