DOI QR코드

DOI QR Code

융합연구를 위한 프랙털 생성의 Evo-Devo 생물학적 고찰

Consideration of Evo-Devo in the Morphogenesis of Fractal Structures in Ammonites

  • Lee, Yu-Ri (Department of Biology, Chungnam National University) ;
  • Kim, Oc-Hee (Department of Biology, Chungnam National University) ;
  • Kim, Cheol-Hee (Department of Biology, Chungnam National University)
  • 투고 : 2017.06.21
  • 심사 : 2017.08.20
  • 발행 : 2017.08.28

초록

자연현상에서 발견되는 프랙털 (fractal) 구조는 자기 유사성 (self-similarity)의 반복된 형태로, 생명체의 발생과 기관 형성에서도 자주 관찰된다. 특히, 수많은 종류의 암모나이트에서 관찰되는 봉합선 (suture)의 복잡, 다양한 형태는 프랙털 생성에 대한 생물학적인 이해를 위한 좋은 연구소재이다. 본 연구에서는 희귀하게 초기 발생단계의 봉합선 구조가 매우 잘 보전된 Eogaudryceras sp.를 대상으로 봉합선 형성의 과정을 분석하고자 하였으며, 일반적으로 구하기 힘든 부위인 나선 (spiral) 중심부 1mm 이내의 현미경적인 관찰을 실시하였다. 아직 봉합선의 프랙털 구조 생성에 대한 생물학적인 기전은 아직 불분명한 상태이나, 본 연구를 통하여 암모나이트 발생초기에 프랙털 구조의 복잡성이 단계별로 분명한 차이가 있음을 발견하였다. 이러한 결과는 하나의 생명체 내에서 "Evo-Devo"의 여러 발생단계의 변화를 동시에 보여줄 수 있는 좋은 예시로서, 향후 프랙털 구조의 생물학적인 기전 연구 및 관련되는 다양한 융합학문에서의 접목과 활용이 기대된다.

Fractal patterns are visible regularities of form found in the natural world. The mathematics of fractals can explain spiral growth patterns of self-similarity in organisms. For example, ammonites have complex but regular patterns of suture lines, resulting in a fractal-like display. In this study, a small region (less than 1mm diameter) of the spiral center of a rarely well preserved ammonite (Eogaudryceras sp.) was examined under microscope. Interestingly, we found a differential change of suture shapes at early stages of animal development providing a model for the study of Evo-devo (evoutionary developmental biology). Evo-devo is a convergence science born out of the recognition of complexity from interactions between generative and adaptive forces.

키워드

참고문헌

  1. Wikipedia, https://ko.wikipedia.org/
  2. M. A. Hassan, G. E. G. Westermann, R. A. Hewitt & M. A. Dokainish, "Finite-element analysis of simulated ammonoid septa: septal and sutural complexities do not reduce strength", Paleobiology, Vol. 28, pp. 113-126, 2002. https://doi.org/10.1666/0094-8373(2002)028<0113:FEAOSA>2.0.CO;2
  3. F. V. De Blasio, "The role of suture complexity in diminishing strain and stress in ammonoid phragmocones", Lethaia, Vol. 41, pp. 15-24, 2008. https://doi.org/10.1111/j.1502-3931.2007.00037.x
  4. T. L. Daniel, B. S. Helmuth, W. B. Saunders & P. D. Ward, "Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth", Paleobiology, Vol. 23, pp. 470-481, 1997. https://doi.org/10.1017/S0094837300019849
  5. G. Boeing, "Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction", Systems, Vol. 4, No. 4, pp. 37, 2016. https://doi.org/10.3390/systems4040037
  6. J. Kullmann & J. Wiedmann, "Significance of sutures in phylogeny of ammonoidea", Paleontological Contributions, Vol. 47, pp. 1-32, 1970.
  7. K. Baets, N. Landman & K. Tanabe, "Ammonoid Embryonic Development" in "Ammonoid Paleobiology: From anatomy to ecology", Springer, Vol 43, pp. 113 - 205, 2015.
  8. P. D. Ward, L. Greenwald & Y. Magnier, "The chamber formation cycle in Nautilus macromphalus", Paleobiology, Vol. 7, pp. 481-493, 1981. https://doi.org/10.1017/S0094837300025537
  9. A. Seilacher, "Why are nautiloid and ammonite sutures so different?", Neues Jahrbuch fur Geologie und Palaontologie, Abhandlungen, Vol. 177, pp. 41-69, 1988.
  10. J. M. Garcia-Ruiz & A. Checa, "A model for the morphogenesis of ammonoid septal sutures", Geobios, Vol. 26, pp. 157-162, 1993. https://doi.org/10.1016/S0016-6995(06)80369-4
  11. S. Inoue and S. Kondo, "Suture pattern formation in ammonites and the unknown rear mantle structure", Scientific Reports, Vol. 6, pp. 33689, 2016. https://doi.org/10.1038/srep33689
  12. O. Hammer, "The development of ammonite septa: an epithelial invagination process controlled by morphogens?", Historical Biology, Vol. 13, pp. 153-171, 1999. https://doi.org/10.1080/08912969909386579
  13. N. Liscovitch-Brauer, S. Alon, H. T. Porath, B. Elstein, R. Unger, T. Ziv, A. Admon, E. Y. Levanon, J. J. Rosenthal, E. Eisenberg, "Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods", Cell, Vol. 169, No. 2, pp. 191-202, 2017. https://doi.org/10.1016/j.cell.2017.03.025
  14. M. S. Lee & H. J. Kim, "The remineralization effect of topical fluoride agents using confocal laser scanning microscope on artificial enamel caries aspects of convergence observation", Journal of the Korea Convergence Society, Vol. 8. No. 6, pp. 139-145, 2017. https://doi.org/10.15207/JKCS.2017.8.6.139
  15. Y. H. Seoung, "Evaluation of Surface Radiation Dose Reduction and Radiograph Artifact Images in Computed Tomography on the Radiation Convergence Shield by Using Sea-Shells", Journal of the Korea Convergence Society, Vol. 8. No. 2, pp. 113-120, 2017. https://doi.org/10.15207/JKCS.2017.8.2.113
  16. J. H. Choi, "Preliminary Development of Pinwheel Model Created by Convergent Truss Structure with Biological DNA Structure", Journal of the Korea Convergence Society, Vol. 7. No. 4, pp. 181-190, 2016. https://doi.org/10.15207/JKCS.2016.7.4.181
  17. G. C. Yang, "Integration Scheme of Gene Information based on Anatomical Structure", Journal of digital Convergence , Vol. 13, No. 2, pp. 153-158, 2015. https://doi.org/10.14400/JDC.2015.13.2.153
  18. S. H. Kim, "Convergence of Fluid Dynamics and Computer Simulation for the Internal Investigation of Fuel Cell", Journal of digital Convergence, Vol. 14, No. 6, pp. 245-251, 2016. https://doi.org/10.14400/JDC.2016.14.6.245
  19. K. N. Kim & M. J. Lee, "Artistic Emotional expression of Image distortion based on the magnetic force and user Immersion Through the Convergence of Art and Science Technology", Journal of digital Convergence, Vol. 13, No. 8, pp. 457-463, 2015. https://doi.org/10.14400/JDC.2015.13.8.457
  20. J. S. Kim, "A study of Histological changes by ${\alpha}$-tocopherol in the hepatic fibrous tissue", Journal of the Korea Convergence Society, Vol. 8. No. 4, pp. 123-129, 2017. https://doi.org/10.15207/JKCS.2017.8.4.123