References
- Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11: 589-603.
- Paczosa MK, Mecsas J. 2016. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 80: 629-661. https://doi.org/10.1128/MMBR.00078-15
- Moore TA, Perry ML, Getsoian AG, Newstead MW, Standiford TJ. 2002. Divergent role of gamma interferon in a murine model of pulmonary versus systemic Klebsiella pneumoniae infection. Infect. Immun. 70: 6310-6318. https://doi.org/10.1128/IAI.70.11.6310-6318.2002
- Renckens R, Roelofs JJ, Bonta PI, Florquin S, de Vries CJ, Levi M, et al. 2007. Plasminogen activator inhibitor type 1 is protective during severe gram-negative pneumonia. Blood 109: 1593-1601. https://doi.org/10.1182/blood-2006-05-025197
- Bogdan C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2: 907-916. https://doi.org/10.1038/ni1001-907
- Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, et al. 2004. Role of Toll-like receptor 4 in grampositive and gram-negative pneumonia in mice. Infect. Immun. 72: 788-794. https://doi.org/10.1128/IAI.72.2.788-794.2004
- Plitas G, Burt BM, Nguyen HM, Bamboat ZM, DeMatteo RP. 2008. Toll-like receptor 9 inhibition reduces mortality in polymicrobial sepsis. J. Exp. Med. 205: 1277-1283. https://doi.org/10.1084/jem.20080162
- Regueiro V, Moranta D, Campos MA, Margareto J, Garmendia J, Bengoechea JA. 2009. Klebsiella pneumoniae increases the levels of Toll-like receptors 2 and 4 in human airway epithelial cells. Infect. Immun. 77: 714-724. https://doi.org/10.1128/IAI.00852-08
- Kobayashi Y. 2010. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J. Leukoc. Biol. 88: 1157-1162. https://doi.org/10.1189/jlb.0310149
- Medzhitov R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135-145. https://doi.org/10.1038/35100529
- Pichavant M, Delneste Y, Jeannin P, Fourneau C, Brichet A, Tonnel AB, et al. 2003. Outer membrane protein A from Klebsiella pneumoniae activates bronchial epithelial cells: implication in neutrophil recruitment. J. Immunol. 171: 6697-6705. https://doi.org/10.4049/jimmunol.171.12.6697
- Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. 1999. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274: 17406-17409. https://doi.org/10.1074/jbc.274.25.17406
- Wieland CW, van Lieshout MH, Hoogendijk AJ, van der Poll T. 2011. Host defence during Klebsiella pneumonia relies on haematopoietic-expressed Toll-like receptors 4 and 2. Eur. Respir. J. 37: 848-857. https://doi.org/10.1183/09031936.00076510
- Vincent JL, Zhang H, Szabo C, Preiser JC. 2000. Effects of nitric oxide in septic shock. Am. J. Respir. Crit. Care Med. 161: 1781-1785. https://doi.org/10.1164/ajrccm.161.6.9812004
- Tsai WC, Strieter RM, Zisman DA, Wilkowski JM, Bucknell KA, Chen GH, et al. 1997. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect. Immun. 65: 1870-1875.
- Gregory SH, Wing EJ, Hoffman RA, Simmons RL. 1993. Reactive nitrogen intermediates suppress the primary immunologic response to Listeria. J. Immunol. 150: 2901-2909.
- Wieland CW, Stegenga ME, Florquin S, Fantuzzi G, van der Poll T. 2006. Leptin and host defense against gram-positive and gram-negative pneumonia in mice. Shock 25: 414-419. https://doi.org/10.1097/01.shk.0000209524.12873.da
- March C, Moranta D, Regueiro V, Llobet E, Tomas A, Garmendia J, et al. 2011. Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells. J. Biol. Chem. 286: 9956-9967. https://doi.org/10.1074/jbc.M110.181008
- Jeannin P, Magistrelli G, Goetsch L, Haeuw JF, Thieblemont N, Bonnefoy JY, et al. 2002. Outer membrane protein A (OmpA): a new pathogen-associated molecular pattern that interacts with antigen presenting cells-impact on vaccine strategies. Vaccine 20 (Suppl 4): A23-A27. https://doi.org/10.1016/S0264-410X(02)00383-3
- Sabroe I, Prince LR, Jones EC, Horsburgh MJ, Foster SJ, Vogel SN, et al. 2003. Selective roles for Toll-like receptor (TLR) 2 and TLR4 in the regulation of neutrophil activation and life span. J. Immunol. 170: 5268-5275. https://doi.org/10.4049/jimmunol.170.10.5268
- Warger T, Hilf N, Rechtsteiner G, Haselmayer P, Carrick DM, Jonuleit H, et al. 2006. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J. Biol. Chem. 281: 22545-22553. https://doi.org/10.1074/jbc.M502900200
- Kovach MA, Standiford TJ. 2001. Toll like receptors in diseases of the lung. Int. Immunopharmacol. 11: 1399-1406.
- Laichalk LL, Kunkel SL, Strieter RM, Danforth JM, Bailie MB, Standiford TJ. 1996. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia. Infect. Immun. 64: 5211-5218.
- Bhan U, Ballinger MN, Zeng X, Newstead MJ, Cornicelli MD, Standiford TJ. 2010. Cooperative interactions between TLR4 and TLR9 regulate interleukin 23 and 17 production in a murine model of gram-negative bacterial pneumonia. PLoS One 5: e9896. https://doi.org/10.1371/journal.pone.0009896
- Elson G, Dunn-Siegrist I, Daubeuf B, Pugin J. 2007. Contribution of Toll-like receptors to the innate immune response to gramnegative and gram-positive bacteria. Blood 109: 1574-1583. https://doi.org/10.1182/blood-2006-06-032961
- Barton BE, Jackson JV. 1993. Protective role of interleukin 6 in the lipopolysaccharide-galactosamine septic shock model. Infect. Immun. 61: 1496-1499.
- Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, et al. 2001. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 14: 705-714. https://doi.org/10.1016/S1074-7613(01)00151-0
- Balamayooran G, Batra S, Theivanthiran B, Cai S, Pacher P, Jeyaseelan S. 2012. Intrapulmonary G-CSF rescues neutrophil recruitment to the lung and neutrophil release to blood in gram-negative bacterial infection in MCP-1-/-mice. J. Immunol. 189: 5849-5859. https://doi.org/10.4049/jimmunol.1200585
- Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Laichalk LL, McGillicuddy DC, et al. 1996. Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J. Infect. Dis. 173: 159-165. https://doi.org/10.1093/infdis/173.1.159
- De Filippo K, Henderson RB, Laschinger M, Hogg N. 2008. Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J. Immunol. 180: 4308-4315. https://doi.org/10.4049/jimmunol.180.6.4308
- Marriott HM, Ali F, Read RC, Mitchell TJ, Whyte MK, Dockrell DH. 2004. Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB J. 18: 1126-1128. https://doi.org/10.1096/fj.03-1450fje
- Cauwels A, Bultinck J, De Zwaef R, Vandendriessche B, Magez S, Brouckaert P. 2014. Nitric oxide production by endotoxin preparations in TLR4-deficient mice. Nitric Oxide 36: 36-43. https://doi.org/10.1016/j.niox.2013.11.001
Cited by
- Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions vol.22, pp.4, 2017, https://doi.org/10.3390/ijms22042108
- Molecular identification of Klebsiella pneumoniae and expression of immune genes in infected spotted gar Lepisosteus oculatus vol.119, pp.None, 2017, https://doi.org/10.1016/j.fsi.2021.10.002
- A hexasaccharide from capsular polysaccharide of carbapenem-resistant Klebsiella pneumoniae KN2 is a ligand of Toll-like receptor 4 vol.278, pp.None, 2017, https://doi.org/10.1016/j.carbpol.2021.118944