DOI QR코드

DOI QR Code

Prevalence and Toxin Characteristics of Bacillus thuringiensis Isolated from Organic Vegetables

  • Kim, Jung-Beom (Department of Food Science and Technology, Sunchon National University) ;
  • Choi, Ok-Kyung (Division of Agricultural Inspection, Gyeonggi-do Research Institute of Health and Environment) ;
  • Kwon, Sun-Mok (Division of Agricultural Inspection, Gyeonggi-do Research Institute of Health and Environment) ;
  • Cho, Seung-Hak (Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health) ;
  • Park, Byung-Jae (Department of Food Science and Biotechnology, School of Bio-convergence Science and Technology, Kangwon National University) ;
  • Jin, Na Young (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yu, Yong Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Oh, Deog-Hwan (Department of Food Science and Biotechnology, School of Bio-convergence Science and Technology, Kangwon National University)
  • Received : 2017.03.28
  • Accepted : 2017.07.05
  • Published : 2017.08.28

Abstract

The prevalence and toxin characteristics of Bacillus thuringiensis isolated from 39 organic vegetables were investigated. B. thuringiensis was detected in 30 out of the 39 organic vegetables (76.9%) with a mean value of 2.60 log CFU/g. Twenty-five out of the 30 B. thuringiensis isolates (83.3%) showed insecticidal toxicity against Spodoptera exigua. The hblCDA, nheABC, and entFM genes were found to be the major toxin genes, but the ces gene was not detected in any of the tested B. thuringiensis isolates. The hemolysin BL enterotoxin was detected in all 30 B. thuringiensis isolates (100%). The non-hemolytic enterotoxin complex was found in 27 out of 30 B. thuringiensis isolates (90.0%). The B. thuringiensis tested in this study had similar toxin gene characteristics to B. cereus, which possessed more than one toxin gene. B. thuringiensis could have the potential risk of foodborne illness based on the toxin genes and toxin-producing ability.

Keywords

References

  1. Schoeni JL, Wong ACL. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636-648. https://doi.org/10.4315/0362-028X-68.3.636
  2. Sergeev N, Distler M, Vargas M, Chizhikov V, Herold KE, Rasooly A. 2005. Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Methods 65: 488-502.
  3. Ehling-Schulz M, Svensson B, Guinbretiere MH, Lindback T, Andersson M, Schulz A, et al. 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related isolates. Microbiology 151: 183-197. https://doi.org/10.1099/mic.0.27607-0
  4. Hendriksen NB, Hansen BM. 2006. Detection of Bacillus thuringiensis kurstaki HD1 on cabbage for human consumption. FEMS Microbiol. Lett. 257: 106-111. https://doi.org/10.1111/j.1574-6968.2006.00159.x
  5. Naranjo SE, Ellsworth PC. 2010. Fourteen years of Bt cotton advances IPM in Arizona. Southwest Entomol. 35: 437-444. https://doi.org/10.3958/059.035.0329
  6. Bartoszewicz M, Hansen BM, Swiecicka I. 2008. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol. 25: 588-596. https://doi.org/10.1016/j.fm.2008.02.001
  7. Rosenquit H, Smidt L, Andersen SR, Jensen GB, Wilcks A. 2005. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 250: 129-136. https://doi.org/10.1016/j.femsle.2005.06.054
  8. Sacch CT, Whitney AM, Mayer LW, Morey R, Steigerwalt A, Boras A, et al. 2002. Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerg. Infect. Dis. 8: 1117-1123. https://doi.org/10.3201/eid0810.020391
  9. Pluina NV, Zotov VS, Parkhomenko AL, Parkhomenko TU, Topunov AF. 2013. Genetic diversity of Bacillus thuringiensis from different geo-ecological regions of Ukraine by analyzing the 16S rRNA and gyrB genes and by AP-PCR and saAFLP. Acta Naturae 5: 90-100.
  10. Frankenhuyzen KV. 2009. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invertebr. Pathol. 101: 1-16. https://doi.org/10.1016/j.jip.2009.02.009
  11. Tornuk F, Cankurt H, Ozturk I, Sagdic O, Bayram O, Yetim H. 2011. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella typhimurium on fresh cut carrots and apples. Int. J. Food Microbiol. 148: 30-35. https://doi.org/10.1016/j.ijfoodmicro.2011.04.022
  12. Tournas VH. 2005. Molds and yeasts in fresh and minimally processed vegetables and sprouts. Int. J. Food Microbiol. 99: 71-77. https://doi.org/10.1016/j.ijfoodmicro.2004.08.009
  13. Jun SY, Kim TH, Kwon JH, Lee YK. 2009. Microbiological evaluation in situ of each process in seed sprouting. Korean J. Food Preserv. 16: 971-976.
  14. Whalon ME, Winferd BA. 2003. Mode of action and use. Arch. Insect Biochem. 54: 200-211. https://doi.org/10.1002/arch.10117
  15. Adrienne E, Shearer H, Christine MS, Rolf DJ. 2001. Evaluation of a polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp., Listeria monocytogenes on fresh fruits and vegetables. J. Food Prot. 64: 788-795. https://doi.org/10.4315/0362-028X-64.6.788
  16. Lee DS, Kim KS, Kwon KS, Hong KW. 2008. A multiplex PCR for the detection and differentiation of enterotoxinproducing and emetic toxin-producing Bacillus cereus strains. Food Sci. Biotechnol. 17: 761-765.
  17. Lee SY, Yun KM, Fellman J, Kang DH. 2002. Inhibition of Salmonella typhimurium and Listeria monocytogenes i n m ung bean sprouts by chemical treatment. J. Food Prot. 65: 1088-1092. https://doi.org/10.4315/0362-028X-65.7.1088
  18. Lee CY, Sung DE, Oh SS. 2012. Profiling and priority selection of foodborne pathogens in fresh produce. J. Food Hyg. Saf. 27: 356-365. https://doi.org/10.13103/JFHS.2012.27.4.356
  19. McIntyre L, Bernard K, Beniac D, Isaac-Renton JL, Naseby DC. 2008. Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia, Canada. Appl. Environ. Microbiol. 74: 7451-7453. https://doi.org/10.1128/AEM.01284-08
  20. Stenfos-Arnesen LP, Fagerlund A, Granum PE. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606. https://doi.org/10.1111/j.1574-6976.2008.00112.x
  21. Chon JW, Hyeon JY, Park JH, Song KY, Kim JH, Seo KH. 2012. Improvement of mannitol-yolk-polymyxin B agar by supplementing with trimethoprim for quantitative detection of Bacillus cereus in foods. J. Food Prot. 75: 1342-1345. https://doi.org/10.4315/0362-028X.JFP-11-519
  22. Kim CW, Cho SH, Kang SH, Park YB, Yoon MH, Lee JB, et al. 2015. Prevalence, genetic diversity, and antibiotic resistance of Bacillus cereus isolated from Korean fermented soybean products. J. Food Sci. 80: M123-M128. https://doi.org/10.1111/1750-3841.12720
  23. Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, et al. 2008. New strategy for isolating novel nematicidal C crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl. Environ. Microbiol. 74: 6997-7001. https://doi.org/10.1128/AEM.01346-08
  24. Lee YK, Jin NY, Lee BR, Seo MJ, Youn YN, Aoki CY, et al. 2015. Isolation and characterization of new Bacillus thuringiensis strains with insecticidal activity to difficult to control lepidopteran pests. J. Fac. Agric. Kyushu Univ. 60: 103-112.
  25. Jin NY, Jung SY, Park C, Paek SK, Seo MJ, Youn YN, et al. 2009. The synergy effects of mixed treatment with tannic acid and Bacillus thuringiensis sub sp. kurstaki KB100 against Spodoptera exigua (Lepidoptera: Noctuidae). Korean J. Appl. Entomol. 48: 519-526. https://doi.org/10.5656/KSAE.2009.48.4.519
  26. Chon JW, Kim JH, Seo KH. 2012. Prevalence, phenotypic traits and molecular characterization of emetic toxin-producing Bacillus cereus strains isolated from human stools in Korea. J. Appl. Microbiol. 112: 1042-1049. https://doi.org/10.1111/j.1365-2672.2012.05277.x
  27. Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikan C, Ohba M, Assavanig A, et al. 2008. Broad distribution of enterotoxin genes (hblCDA, nhe ABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int. J. Food Microbiol. 121: 352-356. https://doi.org/10.1016/j.ijfoodmicro.2007.11.013
  28. Yang IC, Shih DY, Huang TP, Huang YP, Wang JY, Pan TM. 2005. Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group. J. Food Prot. 68: 2123-2130. https://doi.org/10.4315/0362-028X-68.10.2123
  29. Ghelardi E, Celandroni F, Salvetti S, Barsotti C, Baggiani A, Senesi S. 2002. Identification and characterization of toxigenic Bacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiol. Lett. 208: 129-134. https://doi.org/10.1111/j.1574-6968.2002.tb11072.x
  30. Kang TM, Cho SK, Park JY, Song KB, Chung MS, Park JH. 2011. Analysis of microbial contamination of sprouts and freshcut salads in market. Korean J. Food Sci. Technol. 43: 490-494. https://doi.org/10.9721/KJFST.2011.43.4.490
  31. Kim WI, Jung HM, Kim SR, Park KH, Kim BS, Yun JC, et al. 2012. Investigation of microbial contamination levels of leafy greens and its distributing conditions at different time. J. Food Hyg. Saf. 27: 277-284. https://doi.org/10.13103/JFHS.2012.27.3.277
  32. Jo MJ, Jeong AR, Kim HJ, L ee NR, Oh SW, Chun HS, et al. 2011. Microbiological quality of fresh-cut produce and organic vegetables. Korean J. Food Sci. Technol. 43: 91-97. https://doi.org/10.9721/KJFST.2011.43.1.091
  33. Kim SH, Kim JS, Choi JP, Park JH. 2006. Prevalence and frequency of foodborne pathogens on unprocessed agricultural and marine products. Korean J. Food Sci. Technol. 38: 594-598.
  34. Kim BY, Bang JY, Kim HK, K im YS, Kim BS. 2014. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: prevalence and toxin production as affected by production area and degree of milling. Food Microbiol. 42: 89-94. https://doi.org/10.1016/j.fm.2014.02.021
  35. Jin NY, Lee YK, Lee BR, Kim YS, Jun JH, Seo MJ, et al. 2015. Tannic acid enhancing insecticidal activity of protoxin produced in Bacillus thuringiensis subsp. kurstaki KB100 strain against Spodoptera exigua. J. Fac. Agric. Kyushu Univ. 60: 97-102.
  36. Kim JB, Kim JM, Cho SH, Choi NJ, Oh DH. 2011. Toxin genes profiles and toxin producing ability of Bacillus cereus isolated from clinical and food samples. J. Food Sci. 76: T25-T29. https://doi.org/10.1111/j.1750-3841.2010.01958.x
  37. Chon JW, Kim JH, Lee SJ, Hyeon JY, Seo KH. 2012. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik. Food Microbiol. 32: 217-222. https://doi.org/10.1016/j.fm.2012.06.003
  38. Samapundo S, Heyndrickx M, Xhaferi R, Devlieghere F. 2011. Incidence, diversity and toxin gene characteristics of Bacillus cereus groups trains isolated from food products marketed in Belgium. Int. J. Food Microbiol. 150: 34-41. https://doi.org/10.1016/j.ijfoodmicro.2011.07.013
  39. Boonchai N, Asano SI, Bando H, Wiwat C. 2008. Study on cytotoxicity and nucleotide sequences of enterotoxin FM of Bacillus cereus isolated from various food sources. J. Med. Assoc. Thailand 91: 1425-1432.
  40. Tran SL, Guillement E, Gohar M, Lereclus D, Ramarao N. 2010. CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J. Bacteriol. 192: 2638-2642. https://doi.org/10.1128/JB.01315-09
  41. Prabhaker A, Bishop AH. 2011. Invertebrate pathogenicity and toxin-producing potential of strains of Bacillus thuringiensis endemic to Antarctica. J. Invertebr. Pathol. 107: 132-138. https://doi.org/10.1016/j.jip.2011.03.008
  42. Guinebretiere MH, Broussolle V, Nguyen-The C. 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40: 3053-3056. https://doi.org/10.1128/JCM.40.8.3053-3056.2002
  43. Lund T, Debuyser ML, Granum PE. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254-261. https://doi.org/10.1046/j.1365-2958.2000.02147.x
  44. Ehling-Schulz M, Guinbretiere MH, Monthan A, Berge O, Fricker M, Svensson B. 2006. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 260: 232-240. https://doi.org/10.1111/j.1574-6968.2006.00320.x
  45. Stenfors LP, Granum PE. 2001. Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol. Lett. 197: 223-228. https://doi.org/10.1111/j.1574-6968.2001.tb10607.x
  46. Oh MH, Ham JS, Cox JM. 2012. Diversity and toxigenicity among members of Bacillus cereus group. Int. J. Food Microbiol. 152: 1-8. https://doi.org/10.1016/j.ijfoodmicro.2011.09.018
  47. Jeon JH, Park JH. 2010. Toxin gene analysis of Bacillus cereus and Bacillus thuringiensis isolated from cooked rice. Korean J. Food Sci. Technol. 42: 361-367.
  48. Svensson B, Monthan A, Shaheen R, Andersson M, Salkinoja-Salonen M, Christiansson A. 2006. Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. Int. Dairy J. 16: 740-749. https://doi.org/10.1016/j.idairyj.2005.07.002
  49. Bottone EJ. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398. https://doi.org/10.1128/CMR.00073-09
  50. Schoeni JL, Wong ACL. 1999. Heterogeneity observed in the components of haemolysin BL, an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53: 159-167. https://doi.org/10.1016/S0168-1605(99)00158-0
  51. Granum PE, O'Sullivan K, Lund T. 1999. The sequence of the non-hemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177: 225-229. https://doi.org/10.1111/j.1574-6968.1999.tb13736.x
  52. Ryan PA, MacMillan JD, Zilinskas BA. 1997. Molecular cloning and characterization of the genes encoding L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179: 2551-2556. https://doi.org/10.1128/jb.179.8.2551-2556.1997
  53. Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, Andersson M. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105-113. https://doi.org/10.1128/AEM.71.1.105-113.2005
  54. Yang CY, Pang JC, Kao SS, Tsen HY. 2003. Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production. J. Agric. Food Chem. 51: 100-105. https://doi.org/10.1021/jf025863l
  55. Hansen BM, Hendriksen NB. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185-189. https://doi.org/10.1128/AEM.67.1.185-189.2001
  56. Altayar M, Sutherland AD. 2006. Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J. Appl. Microbiol. 100: 7-14. https://doi.org/10.1111/j.1365-2672.2005.02764.x
  57. Kim JB, Park JS, Kim MS, Hong SC, Park JH, Oh DH. 2011. Genetic diversity of emetic toxin producing Bacillus cereus Korean strains. Int. J. Food Microbiol. 150: 66-72. https://doi.org/10.1016/j.ijfoodmicro.2011.07.014
  58. Janes GB, Larsen P, Jacobsen BL, Madsen B, Smidt L, Andrup L. 2002. Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B. thuringiensis-based pesticides. Appl. Environ. Microbiol. 68: 4900-4905. https://doi.org/10.1128/AEM.68.10.4900-4905.2002

Cited by

  1. Enterotoxin Production of Bacillus thuringiensis Isolates From Biopesticides, Foods, and Outbreaks vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.01915
  2. Temperature-Dependent Growth Characteristics of Bacillus thuringiensis in a Ratatouille Food Model vol.83, pp.5, 2017, https://doi.org/10.4315/0362-028x.jfp-19-358
  3. Behavior of the Biological Control Agent Bacillus thuringiensis subsp. aizawai ABTS-1857 and Salmonella enterica on Spinach Plants and Cut Leaves vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.626029
  4. The Food Poisoning Toxins of Bacillus cereus vol.13, pp.2, 2021, https://doi.org/10.3390/toxins13020098
  5. Comparative phenotypic, genotypic and genomic analyses of Bacillus thuringiensis associated with foodborne outbreaks in France vol.16, pp.2, 2017, https://doi.org/10.1371/journal.pone.0246885
  6. Evaluation of B. thuringiensis-based biopesticides in the primary production of fresh produce as a food safety hazard and risk vol.130, pp.None, 2017, https://doi.org/10.1016/j.foodcont.2021.108390