References
- Martinez-Garcia J. 1984. Phytolaccaceae, pp. 1-44. In Juarez SC (ed.), Flora de Veracruz. Fasc 36. Instituto Nacional de Investigaciones sobre Recursos Bioticos, Mexico.
- Cuca SL, Delle MF. 1992. 6-C-formyl and 6-C hydroxymethyl flavonones from Petiveria alliacea. Phytochemistry 31: 2481-2482. https://doi.org/10.1016/0031-9422(92)83304-H
- Delle MF, Menichini F, Cuca LE. 1996. Petiveria alliacea: II. Further flavonoids and triterpenes. Gaz. Chim. Ital. 126: 275-278.
- De Sousa JR, Demuner AJ, Pinheiro JA, Breitmaier E, Cassels BK. 1990. Dibenzyl trisulphide and trans-n-methyl-4-methoxyproline from Petiveria alliaceae. Phytochemistry 29: 3653-3655. https://doi.org/10.1016/0031-9422(90)85294-P
- Kubec R, Musah RA. 2001. Cysteine sulfoxide derivatives in Petiveria alliacea. Phytochemistry 58: 981-985. https://doi.org/10.1016/S0031-9422(01)00304-1
- Berger I, Barrientos AC, Caceres A, Hernandez M, Rastrelli L, Passreiter CM, et al. 1998. Plants used in Guatemala for the treatment of protozoal infections: II. Activity of extracts and fractions of five Guatemalan plants against Trypanosoma cruzi. J. Ethnopharmacol. 62: 107-115. https://doi.org/10.1016/S0378-8741(98)00011-7
- Caceres A, Lopez B, Gonzalez S, Berger I, Tada I, Maki J. 1998. Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants. J. Ethnopharmacol. 62: 195-202. https://doi.org/10.1016/S0378-8741(98)00140-8
- Biblioteca Digital de la Medicina Tradicional Mexicana. Available at: http://www.medicinatradicionalmexicana.unam.mx/monografia.php?l=3&t=&id=7970. Accessed Dec. 25, 2016.
- Echevarria A, Torres ID. 2001. Efecto de un extracto de Petiveria alliacea Lin sobre el crecimiento de Giardia lamblia in vitro. Rev. Cubana Med. Milit. 30: 161-165.
- Diamond LS. 1961. Axenic cultivation of Entamoeba histolytica. Science 134: 336-337. https://doi.org/10.1126/science.134.3475.336
- Bolanos V, Diaz-Martinez A, Soto J, Rodriguez MA, Lopez-Camarillo C, Marchat LA, et al. 2014. The flavonoid (-)-epicatechin affects cytoskeleton proteins and functions in Entamoeba histolytica. J. Proteomics 111: 74-85. https://doi.org/10.1016/j.jprot.2014.05.017
-
Chakravarty AK, Masuda K, Suzuki H, Ageta H. 1994. Unambiguous assignment of
$^{13}C$ chemical shifts of some hopane and migrated hopane derivatives by 2D NMR. Tetrahedron 50: 2865-2876. https://doi.org/10.1016/S0040-4020(01)86999-4 - Kamperdick C, Adam G, Van NH, Sung TV. 1997. Chemical constituents of Madhuca pasquiery. Z. Naturforsch. C Biol. Sci. 52c: 295-300.
- Garcia M, Monzote L, Scull R, Herrera P. 2012. Activity of cuban plants extracts against Leishmania amazonensis. ISRN Pharmacol. 2012: 104540.
- Ruiz L, Ruiz L, Maco M, Cobos M, Gutierrez-Choquevilca AL, Roumy V. 2011. Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. J. Ethnopharmacol. 133: 917-921. https://doi.org/10.1016/j.jep.2010.10.039
- Segelman FP, Segelman AB. 1975. Constituents of Petiveria alliacea L. (Phytoloccaceae), Part I. Isolation of isoarborinol, isoarborinol acetate and isoarborinol cinnamate for the leaves. Lloydia 38: 537.
- Roig JT. 1974. Plantas Medicinales, Aromaticas o Venenosas de Cuba. 2nd Ed. Cientifico-Tecnica, La Habana, Cuba.
- Nes WD, Wong RY, Griffin JF, Duax WL. 1991. On the structure, biosynthesis, function and phylogeny of isoarborinol and motiol. Lipids 26: 649-655. https://doi.org/10.1007/BF02536430
- De Pablos LM, Gonzalez G, Rodrigues R, Garcia GA, Parra A, Osuna A. 2010. Action of a pentacyclic triterpenoid, maslinic acid, against Toxoplasma gondii. J. Nat. Prod. 73: 831-834. https://doi.org/10.1021/np900749b
- AlMusayeib NM, Mothana RA, El Gamal AA, Al-Massarani SM, Maes L. 2013. In vitro antiprotozoal activity of triterpenoid constituents of Kleinia odora growing in Saudi Arabia. Molecules 18: 9207-9218. https://doi.org/10.3390/molecules18089207
- Simelane MB, Shonhai A, Shode FO, Smith P, Singh M, Opoku AR. 2013. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules 18: 12313-12323. https://doi.org/10.3390/molecules181012313
- Steele JC, Warhurst DC, Kirby GC, Simmonds MS. 1999. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother. Res. 13: 115-119. https://doi.org/10.1002/(SICI)1099-1573(199903)13:2<115::AID-PTR404>3.0.CO;2-1
- Traore-Keita F, Gasquet M, di Giorgio C, Ollivier E, Delmas F, Keita A, et al. 2000. Antimalarial activity of four plants used in traditional medicine in Mali. Phytother. Res. 14: 45-47. https://doi.org/10.1002/(SICI)1099-1573(200002)14:1<45::AID-PTR544>3.0.CO;2-C
- van Baren C, Anao I, Leo Di Lira P, Debenedetti S, Houghton P, Croft S, et al. 2006. Triterpenic acids and flavonoids from Satureja parvifolia. Evaluation of their antiprotozoal activity. J. Biosci. 61: 189-192.
- Tan N, Kaloga M, Radtke OA, Kiderlen AF, Oksuz S, Ulubelen A, et al. 2002. Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry 61: 881-884. https://doi.org/10.1016/S0031-9422(02)00361-8
- Gnoatto SC, Vechia LD, Lencina CL, Dassonville-Klimpt A, Da Nascimento S, Mossalayi D, et al. 2008. Synthesis and preliminary evaluation of new ursolic and oleanolic acids derivatives as antileishmanial agents. J. Enzyme Inhib. Med. Chem. 23: 604-610. https://doi.org/10.1080/14756360802204870
- Cunha WR, Martins C, da Silva FD, Crotti AE, Lopes NP, Albuquerque S. 2003. In vitro trypanocidal activity of triterpenes from Miconia species. Planta Med. 69: 470-472. https://doi.org/10.1055/s-2003-39719
- Cunha WR, Crevelin EJ, Arantes GM, Crotti AE, Andrade e Silva ML, Furtado NA, et al. 2006. A study of the trypanocidal activity of triterpene acids isolated from Miconia species. Phytother. Res. 20: 474-478. https://doi.org/10.1002/ptr.1881
Cited by
- Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract vol.48, pp.7, 2017, https://doi.org/10.1080/10826068.2018.1479864
- Development of a Novel Ex-vivo 3D Model to Screen Amoebicidal Activity on Infected Tissue vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-44899-5
- Amoebicidal effect of 5,5′‐[(4‐nitrophenyl)methylene]bis‐6‐hydroxy‐2‐mercapto‐3‐methyl‐4(3H)‐pyrimidinone), a new drug against Entamoe vol.354, pp.2, 2017, https://doi.org/10.1002/ardp.202000263