DOI QR코드

DOI QR Code

침전지의 유동 특성과 Lagrangian Method를 이용한 침전효율 예측에 관한 연구

A Study on Prediction of Sedimentation Efficiency for Sedimentation Basin using Lagrangian Method

  • 최종웅 (한국수자원공사 K-water 융합연구원) ;
  • 홍성택 (한국수자원공사 K-water 융합연구원) ;
  • 김성수 (한국수자원공사 K-water 융합연구원) ;
  • 김연권 (한국수자원공사 K-water 융합연구원) ;
  • 박노석 (경상대학교 토목공학과 및 공학연구원)
  • 투고 : 2017.03.07
  • 심사 : 2017.03.30
  • 발행 : 2017.05.31

초록

국내에서 설치 운영 중인 D정수장의 장방형 침전지를 대상으로 설계유량($15,864m^3/day$)과 운영유량($33,333m^3/day$))에 대하여 CFD 해석 방법을 사용하여 침전지의 유동특성 및 tracer 모의를 수행하였으며, 침전지의 유입부로 유입되는 플럭을 입자로 가정하여 모사하는 Lagrangin 기법을 적용하여 침전지의 효율을 검토하였다. 그 결과 침전지내 흐름을 plug flow 영역으로 만들기 위한 평균 속도값을 0.00193 m/s, 0.00417 m/s로 도출되었다. 또한 각 유량 조건에 대해 Tracer test를 모의한 결과 ${\beta}$(유효접촉인자) 값은 각각 0.51, 0.46, Morrill Index값은 각각 6.05와 3.21, 단락류 Index는 0.54와 0.34로 나타났다.

Flow characteristics analysis and tracer test simulations for the rectangular typed sedimentation basins, which have been operated at D_water treatment plant in Korea, were carried out using CFD (Computational Fluid Dynamics) techniques for design ($15,864m^3/day$) and operation flowrate ($33,333m^3/day$). Also, each efficiency of the sedimentation basin was evaluated by application of the Lagrangin technique on the assumption of the particles flowing into the inlet of the sedimentation basin. From the results of simulation, the mean velocity values for making the flow in the settling basin as a plug flow region were derived as 0.00193 m/s and 0.00417 m/s, respectively. In addition, ${\beta}$ (effective contact factor) values were calculated to be 0.51 and 0.46, and the Morrill Index values were 6.05 and 3.21, respectively for both flowrate conditions.

키워드

참고문헌

  1. Kawamura S., Integrated design of water treatment facilities 2nd ed., John Wiley & Sons. New York(1991).
  2. Prabhata, K. S. and Aditya, T., "Design of class-I sedimentation tanks," ASCE, J. Environ. Eng., 122(1), 71-73(1996). https://doi.org/10.1061/(ASCE)0733-9372(1996)122:1(71)
  3. Krebs, P., Stamou, A. I., Garcta-Heras, J. I. and Rodi, W., "Influence of inlet and outlet configuration on the flow in secondary clarifiers," Water Sci. Tecnol., 34(5-6), 1-9(1996).
  4. Stamou, A. I., Adams, E. W. and Rodi W., "Numerical modelling of flow and settling in primary rectangular clarifier," J. Hydr. Res., 27(5), 665-682(1989). https://doi.org/10.1080/00221688909499117
  5. Athanasia, M. G., Margaritis, K., Thodoris, D. K. and Anastasios, I. Z., "A CFD methodology for the design of sedimentation tanks in potable water treatment Case study: The influence of a feed flow control baffle," Chem. Eng. J., 140, 110-121(2008). https://doi.org/10.1016/j.cej.2007.09.022
  6. Maruejouls, T., Vanrolleghem, P. A., Pelletier, G. and Lessard, P., "A phenomenological retention tank model using settling velocity distributions," Water Res., 46, 6857-6867(2012). https://doi.org/10.1016/j.watres.2011.11.067
  7. Ta, C.T. and Brignal, W. J., "Application of computational fluid dynamics technique to storage reservoir studies," Water Sci. Technol., 37(2), 219-226(1998). https://doi.org/10.1016/S0273-1223(98)00027-4
  8. Lyn, D. A. and Rod, W., "Turbulence measurements in model settling tank," J. Hydr. Engrg., ASCE, 116(1), 3-21 (1990).
  9. Salem, A. I., Okoth, G. and Thoming, J., "An approach to improve the separation of soli-liquid suspensions inclined plate settler: CFD simulation and experimental validation," Water Res., 45(11), 3541-3549(2011). https://doi.org/10.1016/j.watres.2011.04.019
  10. Park, N., Kim S., Choi, J., Sung, B. and Kang, M., "Evaluation of Hydraulic Behavior within Parallel arranged Upflow Sedimentation Basin Using CFD Simulation," J. Korean Soc. Water Waste., 27(4), 469-477(2013). https://doi.org/10.11001/jksww.2013.27.4.469
  11. ANSYS, ANSYS ICEM CFD12 Manual, ANSYS, Inc., Southpointe U.S.A(2009)
  12. ANSYS, ANSYS CFX 12 Manual, ANSYS, Inc., Southpointe U.S.A(2009).
  13. Raimund, B., Stefan, D., Sebastian, F. and Ingmar, N., "On reliable and unreliable numerical methods for the simulation of secondary settling tanks in wastewater treatment," Computer and Chem. Eng., 41, 93-105(2012). https://doi.org/10.1016/j.compchemeng.2012.02.016
  14. Laine, S., Phan, L., Pellarin, P. and Rober, P., "Operating diagnosis on a floccurator settling tank using FLUENT CFD software," Water Sci. & Technol., 39(4), 155-162(1999). https://doi.org/10.1016/S0273-1223(99)00073-6